
Technical Data Sheet

CK521A: 4-in-1 OSLT Calibration Kit, DC to 26.5 GHz, Type-3.5 mm (f) 50 Ohm

Interface

According to Mechanically compatible with 3.5 mm (f) 2.92 mm and SMA

Contents and Documentation

This kit is delivered with

- Standard Definitions Card
 Definitions t
 - Printed Standard Definitions that can be used on nearly all Vector Network Analyzers
- Test Results Documentation
- Hard Shell Case

Material and plating

Connector parts Center conductor Outer conductor Body Dielectric Substrate

Rev 020722

MaterialPlatingBeryllium copperGold, min. 1.27 µm, over nickelStainless steelPassivatedAluminumblack anodizedPSAl₂O₃

Spana	awave Corp. Tel: +1-866-202-9262 www.spanawave.com	Page 1 / 3

CK521A: 4-in-1 OSLT Calibration Kit, DC to 26.5 GHz, Type-3.5 mm (f) 50 Ohm

Electrical data	
Frequency range	DC to 26.5 GHz
Thru	
Return loss	≥ 34 dB, DC to 4 GHz ≥ 32 dB, 4 GHz to 8 GHz ≥ 30 dB, 8 GHz to 26.5 GHz
<u>Open</u>	
Error from nominal phase ¹	\leq 1.0°, DC to 4 GHz
	\leq 2.0°, 4 GHz to 8 GHz
	\leq 3.0°, 8 GHz to 26.5 GHz
<u>Short</u>	
Error from nominal phase ²	\leq 1.0°, DC to 4 GHz
	\leq 2.0°, 4 GHz to 8 GHz
	\leq 3.0°, 8 GHz to 26.5 GHz
Load	
Return loss	\geq 40.0 dB, DC to 4 GHz
	\geq 35.0 dB, 4 GHz to 8 GHz
	\geq 30.0 dB, 8 GHz to 26.5 GHz
DC Resistance	50 $\Omega \pm 0.5 \ \Omega$
Power handling	≤ 0.5 W

¹ The nominal phase is defined by the Offset Delay, the Offset Loss and the Fringing Capacitances.

 2 The nominal phase is defined by the Offset Delay, the Offset Loss and the Short Inductance.

Mechanical data Mating cycles Maximum torque

Rev 020722

Maximum torque Recommended torque Gauge ≥ 500 1.70 Nm 0.90 Nm 0.00 mm to 0.08 mm

General standard definitions

For proper operation the vector network analyzer (VNA) needs a model describing the electrical behavior of this calibration standard. The different models, units, and terms used will depend on the VNA type and they will have to be entered into the VNA. All values are based on typical geometry and plating.

<u>Thru</u> Offset Z _o / Impedance / Z _o Offset Delay Length (electrical) / Offset Length Offset Loss Loss Line Loss @ 1GHz	50 Ω 84.058 ps 25.20 mm 2.51 GΩ/s 0.0183 dB/ √GHz 0.0007 dB/mm		
Open Offset Z _o / Impedance / Z _o Offset Delay Length (electrical) / Offset Length Offset Loss Loss Fringing Capacitances	50 Ω 33.356 ps 10.00 mm 2.20 GΩ/s 0.0127 dB/ \sqrt{GHz} C ₀ = -17.500 x 10 ⁻¹⁵ F C ₁ = -2000.0 x 10 ⁻²⁷ F/Hz		-17.500 fF -2.0000 fF /GHz
	$C_1 = -2000.0 \times 10^{-11} \text{ Hz}$ $C_2 = -140.00 \times 10^{-36} \text{ F/Hz}$ $C_3 = -2.7000 \times 10^{-45} \text{ F/Hz}$	/	0.1400 fF /GHz ²

Spanawave Corp. Tel: +1-866-202-9262 www.spanawave.com	Page 2 / 3

CK521A: 4-in-1 OSLT Calibration Kit, DC to 26.5 GHz, Type-3.5 mm (f) 50 Ohm

Short Offset Z _o / Impedance / Z _o Offset Delay Length (electrical) / Offset Length Offset Loss Loss Short Inductance	50 Ω 33.356 ps 10.00 mm 2.36 GΩ/s 0.0137 dB/ \sqrt{GHz} L ₀ = -44.000 x 10 ⁻¹² H / -44.000 pH
	$L_1 = 3700.0 \times 10^{-24} \text{ H/Hz} / 3.7000 \text{ pH /GHz}$
	$L_2 = -250.00 \times 10^{-33} \text{ H/Hz}^2 / -0.2500 \text{ pH /GHz}^2$
Load Offset Z _o / Impedance / Z _o Offset Delay Length (electrical) / Offset Length Offset Loss Loss	L ₃ = $5.0000 \times 10^{-42} \text{ H/Hz}^3$ / 0.0050 pH /GHz^3 50Ω 0.0000 ps 0.000 mm $0.00 \text{ G}\Omega/\text{s}$ $0.0000 \text{ dB/} \sqrt{\text{GHz}}$
Environmental data Operating temperature range ³ Rated temperature range of use ⁴ Storage temperature range RoHS	+20 °C to +26 °C 0 °C to +50 °C - 40 °C to +85 °C compliant

³ Temperature range over which these specifications are valid.

⁴ This range is underneath and above the operating temperature range, within the calibration kit is fully functional and could be used without damage.

Includes

Rev 020722

Standard delivery for this kit includes Test Results. The documentation issued reports which quantities were tested individually, traceable to national / international standards. Model based standard definitions of the calibration standards are reported in Agilent / Keysight, Rohde & Schwarz and Anritsu compatible VNA format.

Calibration interval	
Recommendation	12 months
Packing	
Standard	1 per bag
Weight	1.24 oz.

While the information has been carefully compiled to the best of our knowledge, nothing is intended as representation or warranty on our part and no statement herein shall be construed as recommendation to infringe existing patents. In the effort to improve our products, we reserve the right to make changes judged to be necessary.

Spanawave Corp. Tel: +1-866-202-9262 www.spanawave.com	Page 3 / 3
--	---------------