
Technical Data Sheet

CK520A: 4-in-1 OSLT Calibration Kit, DC to 26.5 GHz, Type-3.5 mm (m) 50 Ohm

Interface

According to Mechanically compatible with

3.5 mm (m) 2.92 mm and SMA

Contents and Documentation

This kit is delivered with

- Standard Definitions Card
 Printed Standard Definitions that can be used on nearly all Vector Network Analyzers
- Test Results Documentation
- Hard Shell Case

Material and plating

Connector parts
Center conductor
Outer conductor
Coupling nut
Body
Dielectric
Substrate

Material Plating

Beryllium copper Gold, min. 1.27 µm, over nickel Stainless steel Passivated Stainless steel Passivated Aluminum black anodized PS Al₂O₃

Technical Data Sheet

CK520A: 4-in-1 OSLT Calibration Kit, DC to 26.5 GHz, Type-3.5 mm (m) 50 Ohm

Electrical data

Frequency range DC to 26.5 GHz

Thru

Return loss \geq 34 dB, DC to 4 GHz \geq 32 dB, 4 GHz to 8 GHz

 \geq 30 dB, 8 GHz to 26.5 GHz

<u>Open</u>

Error from nominal phase¹ $\leq 1.0^{\circ}$, DC to 4 GHz

≤ 2.0°, 4 GHz to 8 GHz ≤ 3.0°, 8 GHz to 26.5 GHz

<u>Short</u>

Error from nominal phase² $\leq 1.0^{\circ}$, DC to 4 GHz

≤ 2.0°, 4 GHz to 8 GHz ≤ 3.0°, 8 GHz to 26.5 GHz

Load

Return loss \geq 40.0 dB, DC to 4 GHz

≥ 35.0 dB, 4 GHz to 8 GHz ≥ 30.0 dB, 8 GHz to 26.5 GHz

DC Resistance 50 $\Omega \pm 0.5 \Omega$ Power handling $\leq 0.5 \text{ W}$

Mechanical data

 $\begin{array}{ll} \text{Mating cycles} & \geq 500 \\ \text{Maximum torque} & 1.70 \text{ Nm} \\ \text{Recommended torque} & 0.90 \text{ Nm} \\ \end{array}$

Gauge 0.00 mm to 0.08 mm

General standard definitions

For proper operation the vector network analyzer (VNA) needs a model describing the electrical behavior of this calibration standard. The different models, units, and terms used will depend on the VNA type and they will have to be entered into the VNA. All values are based on typical geometry and plating.

<u>Thru</u>

 $\begin{array}{lll} \mbox{Offset Z_{\circ} / Impedance / Z_{\circ}} & 50 \ \Omega \\ \mbox{Offset Delay} & 84.058 \ ps \\ \mbox{Length (electrical) / Offset Length} & 25.20 \ mm \\ \mbox{Offset Loss} & 2.51 \ \mbox{G}\Omega/s \\ \mbox{Loss} & 0.0183 \ \mbox{dB}/\sqrt{\mbox{GHz}} \\ \mbox{Line Loss @ 1GHz} & 0.0007 \ \mbox{dB/mm} \end{array}$

Open

 $\begin{array}{lll} \text{Offset Z_{\circ} / Impedance / Z_{\circ}} & 50 \ \Omega \\ \text{Offset Delay} & 33.356 \ \text{ps} \\ \text{Length (electrical) / Offset Length} & 10.00 \ \text{mm} \\ \text{Offset Loss} & 2.20 \ \text{G}\Omega/\text{s} \\ \end{array}$

Loss $0.0127 \text{ dB}/\sqrt{\text{GHz}}$ Fringing Capacitances $C_0 = -17.000 \text{ x } 10^{-15} \text{ F} \qquad / \qquad -17.000 \text{ fF}$

 $C_1 = -2000.0 \times 10^{-27} \text{ F/Hz}$ / -2.0000 fF /GHz $C_2 = 147.00 \times 10^{-36} \text{ F/Hz}^2$ / 0.1470 fF /GHz^2 $C_3 = -3.0000 \times 10^{-45} \text{ F/Hz}^3$ / $-0.0030 \text{ fF /GHz}^3$

¹ The nominal phase is defined by the Offset Delay, the Offset Loss and the Fringing Capacitances.

² The nominal phase is defined by the Offset Delay, the Offset Loss and the Short Inductance.

Technical Data Sheet

CK520A: 4-in-1 OSLT Calibration Kit, DC to 26.5 GHz, Type-3.5 mm (m) 50 Ohm

Short

 $\begin{array}{ll} \text{Offset Z}_{\text{o}} \, / \, \text{Impedance} \, / \, \text{Z}_{\text{o}} & 50 \, \Omega \\ \text{Offset Delay} & 33.356 \, \text{ps} \\ \text{Length (electrical)} \, / \, \text{Offset Length} & 10.00 \, \text{mm} \\ \text{Offset Loss} & 2.36 \, \text{G}\Omega / \text{s} \\ \end{array}$

Loss $0.0127 \text{ dB}/\sqrt{\text{GHz}}$

Short Inductance $L_0 = -39.000 \times 10^{-12} \, \text{H}$ / $-39.000 \, \text{pH}$

 $L_1 = 2200.0 \text{ x } 10^{-24} \text{ H/Hz} / 2.2000 \text{ pH /GHz}$ $L_2 = -150.00 \text{ x } 10^{-33} \text{ H/Hz}^2 / -0.1500 \text{ pH /GHz}^2$ $L_3 = 3.0000 \text{ x } 10^{-42} \text{ H/Hz}^3 / 0.0030 \text{ pH /GHz}^3$

Load

 $\begin{array}{lll} \mbox{Offset $Z_{\rm o}$ / Impedance / $Z_{\rm o}$} & 50 \ \Omega \\ \mbox{Offset Delay} & 0.0000 \ \mbox{ps} \\ \mbox{Length (electrical) / Offset Length} & 0.000 \ \mbox{mm} \\ \mbox{Offset Loss} & 0.00 \ \mbox{G}\Omega/\mbox{s} \\ \mbox{Loss} & 0.0000 \ \mbox{dB}/\sqrt{\mbox{GHz}} \end{array}$

Environmental data

Operating temperature range 3 +20 °C to +26 °C Rated temperature range of use 4 0 °C to +50 °C Storage temperature range -40 °C to +85 °C RoHS compliant

Includes

Standard delivery for this kit includes Test Results. The documentation issued reports which quantities were tested individually, traceable to national / international standards. Model based standard definitions of the calibration standards are reported in Agilent / Keysight, Rohde & Schwarz and Anritsu compatible VNA format.

Calibration interval

Recommendation 12 months

Packing

Standard 1 per bag Weight 1.35 oz.

While the information has been carefully compiled to the best of our knowledge, nothing is intended as representation or warranty on our part and no statement herein shall be construed as recommendation to infringe existing patents. In the effort to improve our products, we reserve the right to make changes judged to be necessary.

³ Temperature range over which these specifications are valid.

⁴ This range is underneath and above the operating temperature range, within the calibration kit is fully functional and could be used without damage.