
Technical Data Sheet

SPANAWAVE

CK518A: 4-in-1 OSLT Calibration Kit, DC to 18 GHz, Type-N (m) 50 Ohm

Interface

According to

Type-N (m)

Contents and Documentation

This kit is delivered with

- **Standard Definitions Card** • Printed Standard Definitions that can be used on nearly all Vector Network Analyzers
- **Test Results Documentation** •
- Lanyard
- Hard Shell Case

Material and plating

Connector parts Center conductor Outer conductor Coupling nut Body Dielectric Substrate

Rev 020722

Material Stainless steel Stainless steel Aluminum PPE Al₂O₃

Plating Beryllium copper Gold, min. 1.27 µm, over nickel Passivated Passivated black anodized

Spanawave Corp. Tel: +1-866-202-9262 www.spanawave.com	Page 1 / 3

CK518A: 4-in-1 OSLT Calibration Kit, DC to 18 GHz, Type-N (m) 50 Ohm

Electrical data	
Frequency range	DC to 18 GHz
Thru	
Return loss	\geq 40 dB, DC to 6 GHz
	\geq 36 dB, 6 GHz to 9 GHz
	\geq 32 dB, 9 GHz to 18 GHz
<u>Open</u>	
Error from nominal phase ¹	\leq 2.0°, DC to 6 GHz
	\leq 3.0°, 6 GHz to 9 GHz
	\leq 4.0°, 9 GHz to 18 GHz
Short	
Error from nominal phase ²	\leq 1.5°, DC to 6 GHz
	\leq 2.0°, 6 GHz to 9 GHz
	\leq 2.5°, 9 GHz to 18 GHz
Load	
Return loss	\geq 42 dB, DC to 6 GHz
	\geq 36 dB, 6 GHz to 9 GHz
	\geq 30 dB, 9 GHz to 18 GHz
DC-Resistance	$50 \Omega \pm 0.5 \Omega$
Power handling	< 1.0 W
r owor nurraing	_ 1.0 W

¹ The nominal phase is defined by the Offset Delay, the Offset Loss and the Fringing Capacitances.

² The nominal phase is defined by the Offset Delay, the Offset Loss and the Short Inductance.

Mechanical data

Rev 020722

Mating cycles Maximum torque Recommended torque Gauge ≥ 500 1.70 Nm 1.10 Nm 5.28 mm to 5.32 mm

General standard definitions

For proper operation the vector network analyzer (VNA) needs a model describing the electrical behavior of this calibration standard. The different models, units, and terms used will depend on the VNA type and they will have to be entered into the VNA. All values are based on typical geometry and plating.

Thru Offset Z _o / Impedance / Z _o Offset Delay Length (electrical) / Offset Length Offset Loss Loss Line Loss @ 1GHz	50 Ω 212.814 ps 63.80 mm 2.20 GΩ/s 0.0407 dB/ √GHz 0.0006 dB/mm	
Open Offset Z _o / Impedance / Z _o Offset Delay Length (electrical) / Offset Length Offset Loss Loss Fringing Capacitances	50 Ω 73.384 ps 22.00 mm 0.80 GΩ/s 0.0102 dB/ \sqrt{GHz} C ₀ = -14.2000 x 10 ⁻¹⁵ F /	-14.2000 fF
	$C_1 = 400.000 \times 10^{-27} \text{ F/Hz} /$	
	$C_2 = -16.0000 \times 10^{-36} \text{ F/Hz}^2 / C_3 = 1.00000 \times 10^{-45} \text{ F/Hz}^3 / C_3 = 1.000000 \times 10^{-45} \text{ F/Hz}^3 / C_3 = 1.00000 \times 10^{-45} \text{ F/Hz}^3 / C_3 = 1.000000 \times 10^{-45} \text{ F/Hz}^3 / C_3 = 1.0000000 \times 10^{-45} \text{ F/Hz}^3 / C_3 = 1.00000000000000000000000000000000000$	

Spanawave Corp. Tel: +1-866-202-9262 www.spanawave.com	Page 2 / 3
--	---------------

Technical Data Sheet

CK518A: 4-in-1 OSLT Calibration Kit, DC to 18 GHz, Type-N (m) 50 Ohm

<u>Short</u>

Offset Z _o / Impedance / Z _o	50 Ω	
Offset Delay	73.384 ps	
Length (electrical) / Offset Length	22.00 mm	
Offset Loss	0.80 GΩ/s	
Loss	0.0102 dB/ √GHz	
Short Inductance	$L_0 = -27.0000 \times 10^{-12} \text{ H} \qquad /$	-27.0000 pH
	$L_1 = 7200.00 \times 10^{-24} \text{ H/Hz} /$	7.20000 pH/GHz
	$L_2 = -800.000 \text{ x } 10^{-33} \text{ H/Hz}^2 \text{ /}$	-0.80000 pH/GHz ²
	$L_3 = 26.0000 \times 10^{-42} \text{ H/Hz}^3 \text{ /}$	0.02600 pH/GHz ³
Load		
Offset Z_0 / Impedance / Z_0	50 Ω	
Offset Delay	0.0000 ps	
Length (electrical) / Offset Length	0.000 mm	
Offset Loss	0.00 GΩ/s	
Loss	0.0000 dB/ √GHz	

Environmental data

Operating temperature range ³	+20 °C to +26 °C
Rated temperature range of use ⁴	0 °C to +50 °C
Storage temperature range	- 40 °C to +85 °C
RoHS	compliant

³ Temperature range over which these specifications are valid.

⁴ This range is underneath and above the operating temperature range, within the calibration kit is fully functional and could be used without damage.

Includes

Standard delivery for this kit includes Test Results. The documentation issued reports which quantities were tested individually, traceable to national / international standards. Model based standard definitions of the calibration standards are reported in Agilent / Keysight, Rohde & Schwarz and Anritsu compatible VNA format.

Calibration interval	
Recommendation	12 months
Packing	
Standard	1 per bag
Weight	9.28 oz.

While the information has been carefully compiled to the best of our knowledge, nothing is intended as representation or warranty on our part and no statement herein shall be construed as recommendation to infringe existing patents. In the effort to improve our products, we reserve the right to make changes judged to be necessary.

Spanawave Corp. Tel: +1-866-202-9262 www.spanawave.com	Page 3 / 3
--	---------------