

GT-8550B USB Power Sensors

Programming Manual

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 2

All technical data and specifications in this publication are subject to change without prior notice and do
not represent a commitment on the part of Giga-tronics, Incorporated.

Copyright © 2012 Giga-tronics Incorporated. All rights reserved. Printed in the U.S.A.

CONTACT INFORMATION
Giga-tronics, Incorporated
4650 Norris Canyon Road
San Ramon, California 94583
Telephone: 800.726.4442 (only within the United States)
 925.328.4650
Fax: 925.328.4700
On the Internet: www.gigatronics.com

Warranty
Giga-tronics GT-8550B Series USB Power Sensors are
warranted against defective materials and workmanship for
one year from date of shipment. Giga-tronics will at its
option repair or replace products that are proven defective
during the warranty period. This warranty DOES NOT
cover damage resulting from improper use, nor
workmanship other than Giga-tronics service. There is no
implied warranty of fitness for a particular purpose, nor is
Giga-tronics liable for any consequential damages.
Specification and price change privileges are reserved by
Giga-tronics.

http://www.gigatronics.com/

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 3

 Regulatory compliance information

This product complies with the essential requirements of the following applicable European Directives,
and carries the CE mark accordingly.

89/336/EEC and 73/23/EEC EMC Directive and Low Voltage Directive
EN61010-1 (1993) Electrical Safety

EN61326-1 (1997) EMC – Emissions and Immunity

Manufacturer’s Name: Manufacturer’s Address

Giga-tronics, Incorporated 4650 Norris Canyon Road
 San Ramon, California 94583

 U.S.A.

Type of Equipment: Model Series Number

USB Power Sensor GT-8550B

Model Numbers:
GT-8551B, GT-8552B, GT-8553B, GT-8554B, and GT-8555B

Declaration of Conformity on file. Contact Giga-tronics at the following;
Giga-tronics, Incorporated
4650 Norris Canyon Road
San Ramon, California 94583
Telephone: 800.726.4442 (only within the United States)
 925.328.4650
Fax: 925.328.4700

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 4

Record of Changes to This Manual
Use the table below to maintain a permanent record of changes to this document. Corrected replacement
pages are issued as Technical Publication Change Instructions (TCPI). When you are issued a TCPI, do
the following:

1. Insert the TCPI at the front of the manual binder.

2. Remove the pages from the manual binder that are noted in the TCPI.

3. Replace the page(s) removed in the previous step with the corrected page(s).

4. Record the changes in the table below.

TPCI Number TPCI Issue
Date

Date Entered Comments

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 5

INTRODUCTION ... 10

GETTING STARTED ... 10

COMPUTER REQUIREMENTS .. 10
EXAMPLE PROGRAMS .. ERROR! BOOKMARK NOT DEFINED.
COMMANDS COMMON TO ALL MODELS ... 11
PULSE MEASUREMENTS ... 11
PULSE PROFILING.. 11
ADDRESSING AND COMMUNICATING WITH SENSORS ... 11

Identify the Instrument .. 12
Setting the Instrument Address(es) ... 13

To set the address using the Power Meter application. .. 13
To set the address using the Sensor Manager application .. 15
To set the address programmatically .. 16

MAKE A SIMPLE CW MEASUREMENT EXAMPLE .. 16
Visual C# 2010 Express Code.. 18
Visual Basic 2010 Express Code ... 20
VB 6.0 Code .. 21

COMMAND GROUPS .. 22

CW MEASUREMENT COMMAND GROUP .. 22
INITIALIZATION AND IDENTIFICATION COMMAND GROUP .. 22
PULSE MEASUREMENT COMMAND GROUP.. 23
PULSE SETUP COMMAND GROUP .. 23
PULSE PROFILING GATE COMMAND GROUP .. 24
PULSE PROFILING MARKER COMMAND GROUP .. 25
PULSE PROFILING SETUP COMMAND GROUP ... 26
TRIGGER COMMAND GROUP .. 27

COMMANDS LISTED IN ALPHABETICAL ORDER .. 28

LB_ADDRESSCONFLICTEXISTS ... 29
LB_BLINKLED_ADDR (AND RELATED COMMANDS) ... 30

LB_BlinkLED_Idx .. 30
LB_BlinkLED_SN .. 30

LB_CHANGEADDRESS ... 31
LB_DRIVERVERSION ... 32
LB_GETFIRMWAREVERSION ... 33
LB_GETINDEX_ADDR (AND RELATED COMMANDS) ... 34

LB_GetIndex_SN ... 34
LB_GetModelNumber_Idx .. 35
LB_GetModelNumber_SN... 35

LB_GETSERNO_ADDR (AND RELATED COMMANDS).. 38
LB_GetSerNo_Idx .. 38

LB_INITIALIZESENSOR_ADDR (AND RELATED COMMANDS) ... 39
LB_InitializeSensor_Idx ... 39
LB_InitializeSensor_SN .. 39

LB_ISDEVICEINUSE_ADDR (AND RELATED COMMANDS) .. 40
LB_IsDeviceInUse_Idx ... 40
LB_IsDeviceInUse_SN.. 40

LB_ISSENSORCONNECTED_ADDR (AND RELATED COMMANDS) ... 41
LB_IsSensorConnected_SN ... 41

LB_MEASUREBURST_DBM ... 42
LB_MEASURECW .. 43

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 6

LB_MEASURECW_PF .. 44
LB_MEASUREPULSE ... 46
LB_MEASUREPULSE_PF ... 48
LB_RESETREGSTATES (AND RELATED COMMANDS) ... 49

LB_ResetCurrentState ... 49
LB_READSTATEFROMINI (AND RELATED COMMANDS) .. 50

LB_WriteStateToINI .. 50
LB_SENSORCNT ... 51
LB_SENSORLIST ... 52
LB_SET75OHMSENABLED (AND RELATED COMMANDS) ... 54

LB_Get75OhmsEnabled .. 54
LB_SETADDRESS_IDX (AND RELATED COMMANDS) ... 55

LB_GetAddress_Idx ... 55
LB_SETADDRESS_SN (AND RELATED COMMANDS) ... 56

LB_GetAddress_SN ... 56
LB_GetAntiAliasingEnabled ... 57

LB_SETAUTOPULSEENABLED (AND RELATED COMMANDS) ... 59
LB_GetAutoPulseEnabled ... 59

LB_SETAVERAGES (AND RELATED COMMANDS) .. 61
LB_GetAverages .. 61

LB_SETCALDUEDATE (AND RELATED COMMANDS) ... 62
LB_GetCalDueDate ... 62

LB_SETCWREFERENCE (AND RELATED COMMANDS) ... 64
LB_GetCWReference... 64

LB_SETDUTYCYCLEENABLED (AND RELATED COMMANDS) .. 66
LB_GetDutyCycleEnabled ... 66
LB_SetDutyCyclePerCent .. 66
LB_GetDutyCyclePerCent .. 66

LB_SETEXTENDEDAVERAGING (AND RELATED COMMANDS) .. 68
LB_GetExtendedAveraging ... 68
LB_SetExtendedAveragingEnabled ... 68
LB_GetExtendedAveragingEnabled .. 68
LB_ResetExtendedAveraging .. 68

LB_SETFREQUENCY (AND RELATED COMMANDS) .. 70
LB_GetFrequency .. 70

LB_SETLIMITENABLED (AND RELATED COMMANDS) .. 71
LB_GetLimitEnabled .. 71
LB_SetSingleSidedLimit ... 71
LB_GetSingleSidedLimit .. 71
LB_SetDoubleSidedLimit ... 71
LB_GetDoubleSidedLimit .. 71

LB_SETMAXHOLDENABLED (AND RELATED COMMANDS) ... 78
LB_GetMaxHoldEnabled ... 78
LB_ResetMaxHold ... 78

LB_SETMEASUREMENTPOWERUNITS (AND RELATED COMMANDS) .. 79
LB_GetMeasurementPowerUnits ... 79

LB_SETOFFSET (AND RELATED COMMANDS) .. 81
LB_GetOffset ... 81
LB_SetOffsetEnabled .. 81
LB_GetOffsetEnabled .. 81

LB_SETPULSECRITERIA (AND RELATED COMMANDS) ... 83
LB_GetPulseCriteria .. 83

LB_SETPULSEREFERENCE (AND RELATED COMMANDS) .. 86
LB_GetPulseReference .. 86

LB_SETRESPONSEENABLED (AND RELATED COMMANDS) ... 88
LB_GetResponseEnabled .. 88

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 7

LB_SetResponse .. 88
LB_GetResponse ... 88

LB_SETTTLTRIGGERINENABLED (AND RELATED COMMANDS) ... 91
LB_GetTTLTriggerInEnabled .. 91
LB_SetTTLTriggerInInverted .. 91
LB_GetTTLTriggerInInverted ... 91
LB_SetTTLTriggerInTimeOut ... 91
LB_GetTTLTriggerInTimeOut ... 91

LB_SETTTLTRIGGEROUTENABLED (AND RELATED COMMANDS) .. 94
LB_GetTTLTriggerOutEnabled ... 94
LB_SetTTLTriggerOutInverted ... 94
LB_GetTTLTriggerOutInverted .. 94

LB_STOREREG (AND RELATED COMMANDS) .. 96
LB_RecallReg ... 96

LB_WILLADDRESSCONFLICT ... 98
PP_ANALYSISTRACEISVALID ... 99
PP_CHECKTRIGGER .. 100
PP_CNVTTRACE ... 101
PP_CURRTRACE2ANALYSISTRACE ... 102
PP_GATEPOSITIONISVALID .. 103
PP_GETANALYSISTRACELENGTH ... 104
PP_GETGATECRESTFACTOR ... 105
PP_GETGATEDROOP .. 106
PP_GETGATEDUTYCYCLE .. 107
PP_GETGATEENDPOSITION ... 108
PP_GETGATEFALLTIME ... 109
PP_GETGATEOVERSHOOT ... 110
PP_GETGATEPEAKPOWER... 111
PP_GETGATEPRF .. 112
PP_GETGATEPRT .. 113
PP_GETGATEPULSEPOWER ... 114
PP_GETGATEPULSEWIDTH .. 115
PP_GETGATERISETIME ... 116
PP_GETMARKERAMP ... 117
PP_GETMARKERDELTAAMP .. 118
PP_GETPEAKS_VAL (AND RELATED COMMANDS) ... 119

PP_GetPeaks_Idx .. 119
PP_GetPeaksFromTr_Val .. 119
PP_GetPeaksFromTr_Idx .. 119
PP_GetPeaks_VEE_Idx .. 119
PP_GetPeaks_VEE_Val .. 119

PP_GETPULSEEDGESTIME (AND RELATED COMMANDS) ... 122
PP_GetPulseEdgesPosition ... 122

PP_GETTRACE ... 124
PP_GETTRACEAVGPOWER (AND RELATED COMMANDS) .. 126

PP_GetTraceCrestFactor ... 126
PP_GetTraceDC ... 126
PP_GetTracePkPwr ... 126
PP_GetTracePulsePower... 126

PP_GETTRACELENGTH .. 128
PP_MARKERPOSISVALID ... 129
PP_MARKERTOPK (AND RELATED COMMANDS) ... 130

PP_MarkerToLowestPk ... 130
PP_MarkerToFirstPk ... 130
PP_MarkerToLastPk .. 130

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 8

PP_MarkerPrevPk ... 130
PP_MarkerNextPk ... 130
PP_MarkerPkHigher .. 130
PP_MarkerPkLower .. 130

PP_SETANALYSISTRACE (AND RELATED COMMANDS) .. 132
PP_GetAnalysisTrace .. 132

PP_SETAVGMODE (AND RELATED COMMANDS) .. 134
Related Commands: .. 134
PP_GetTraceAvgs .. 134
PP_GetAvgMode ... 134
PP_ResetTraceAveraging .. 134

PP_SETAVGRESETSENS (AND RELATED COMMANDS) .. 136
PP_GetAvgResetSens .. 136

PP_SETCLOSESTSWEEPTIMEUSEC .. 137
PP_SETFILTER (AND RELATED COMMANDS) ... 138

PP_GetFilter .. 138
PP_SETGATEMODE (AND RELATED COMMANDS) ... 141

PP_GetGateMode ... 141
PP_SETGATESTARTENDPOSITION (AND RELATED COMMANDS) ... 143

PP_GetGateStartEndPosition .. 143
PP_SetGateStartEndTime ... 143
PP_GetGateStartEndTime ... 143
PP_SetGateStartPosition... 143
PP_GetGateStartPosition .. 143
PP_SetGateEndPosition .. 143
PP_GetGateEndPosition ... 143
PP_SetGateStartTime.. 143
PP_GetGateStartTime ... 143
PP_SetGateEndTime ... 143
PP_GetGateEndTime .. 143

PP_SETMARKERDELTATIME (AND RELATED COMMANDS) .. 147
PP_GetMarkerDeltaTime .. 147

PP_SETMARKERMODE (AND RELATED COMMANDS) ... 148
PP_GetMarkerMode ... 148

PP_SETMARKERPOSITION (AND RELATED COMMANDS) ... 150
PP_GetMarkerPosition ... 150
PP_SetMarkerPositionTime .. 150
PP_GetMarkerPositionTime ... 150

PP_SETMEASUREMENTTHRESHOLD (AND RELATED COMMANDS) .. 152
PP_GetMeasurementThreshold ... 152

PP_SETPOLES (AND RELATED COMMANDS) ... 153
PP_GetPoles .. 153

PP_SETSWEEPDELAY (AND RELATED COMMANDS).. 154
PP_GetSweepDelay ... 154

PP_SETSWEEPDELAYMODE (AND RELATED COMMANDS) .. 155
PP_GetSweetDelayMode .. 155

PP_SETSWEEPDELAYMODE (AND RELATED COMMANDS) .. 156
PP_GetSweetDelayMode .. 156

PP_SETSWEEPHOLDOFF (AND RELATED COMMANDS) ... 157
PP_GetSweepHoldOff ... 157

PP_SETSWEEPTIME (AND RELATED COMMANDS) ... 158
PP_GetSweepTime .. 158

PP_SETTIMEOUT (AND RELATED COMMANDS) .. 160
PP_GetTimeOut .. 160

PP_SETTRIGGEREDGE (AND RELATED COMMANDS) .. 161
PP_GetTriggerEdge ... 161

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 9

PP_SETTRIGGERLEVEL (AND RELATED COMMANDS) .. 162
PP_GetTriggerLevel ... 162

PP_SETTRIGGEROUT (AND RELATED COMMANDS) .. 163
PP_GetTriggerOut ... 163

PP_SETTRIGGERSOURCE (AND RELATED COMMANDS) ... 164
PP_GetTriggerSource .. 164

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 10

Introduction

This manual provides programming information for remotely controlling the Giga-tronics GT-8550A/B
Series USB Power Sensors using the Power Meter application and/or the Pulse Profiling application.

The Giga-tronics Measurement Xpress software was previously used to control the USB power sensors
and has been discontinued. The command set with this new software is not backwards code compatible
with Measurement Xpress.

Most of the commands listed in this document relate to the Power Meter or Pulse Profiling applications.
The commands related to the Power Meter application begin with “LB” and the commands that relate to
the Pulse Profiling application begin with “PP”. All models of sensors work with the Power Meter
application and only select ones work with the Pulse Profiling application also. These are detailed in
Table 1 below.

Table 1 GT-8550B Series USB Power Sensors Models

Model Description Measurements

GT-8888A
100 MHz to 8 GHz

1

Average

GT-8551B
100 MHz to 8 GHz

1

Peak, pulse and average

GT-8552B
100 MHz to 8 GHz

1

Pulse profiling with peak, pulse and
average

GT-8553B
10 MHz to 18 GHz

True average power

GT-8554B
10 MHz to 26.5 GHz

True average power

GT-8555B 100 MHz to 20 GHz
 Pulse profiling with peak, pulse and
average

1
 Operational to 10 GHz

Getting Started

Computer Requirements
The following table shows the requirements of the computer used with the GT-8550B Series USB Power
Sensors.

Table 2 Computer Requirements for Power Meter and Pulse Profiling Applications and
the DLL

Parameter Specification

Type of computer IBM-compatible

Operating system Microsoft® Windows XP, Windows Vista, Windows 7 (both 32 bit and 64 bit)

Processor speed > 500 MHz

RAM At least 256 MB

CD-ROM 4X or greater

Disk space At least 20 MB

USB interface USB 2.0 minimum

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 11

The programmatic interface consists of a dynamic link library or DLL. The name of the DLL is
LB_API2.DLL. This library uses the WinAPI or “_stdcall” calling convention. The name of the default
application directory is “C:\Program Files\Giga-tronics Inc\Power Sensor Applications”.

Commands Common to all Models

Some commands only apply to certain instrument models and their corresponding measurement
capabilities. Other commands, called common commands, apply to all instrument models. These
commands all begin with the prefix “LB”. This common command group includes commands to:

 Detect, identify, and address an instrument

 Initialize an instrument

 Manage communications and exceptions with an instrument

 Set the center frequency

 Perform average power measurements

 Configure and perform pass/fail limit testing on continuous wave (CW) power

 Set averaging parameters

 Set trigger conditions

 Configure offsets and relative measurements

 Save and recall setups

Pulse Measurements
The GT-8551B, GT-8552B, and the GT-8555B sensors can all measure power contained within pulses.
These measurements include average pulse power, peak pulse power, crest factor, duty cycle, and
average continuous wave (CW) power. Commands
related to these measurement types begin with the prefix “LB”.
These instrument models support additional commands to:

 Set the criteria for distinguishing pulses

 Perform average pulse power, pulse power, crest factor, and duty cycle

 Configure and perform pass/fail limit testing on pulse power

Pulse Profiling
The GT-8552B and GT-88555B sensors can perform pulse profiling measurements. Commands related
to these measurement types begin with the prefix “PP”, and are used to:

 Configure and manage pulse profile triggers

 Perform gated measurements of pulse characteristics

 Manipulate markers and read back measurements

 Set filters

 Transfer the trace to the computer

 Perform power measurements on the trace

 Perform pulse measurements like rise/fall time, overshoot and droop

Addressing and Communicating with Sensors
There are several functions that enable you to use an instrument identifier and a series of commands to
establish a connection. Some of the actions that can be performed are as follows:

 Collect all sensor identification information (index, serial number and address)

 Obtain the address by serial number or index

 Set/change the address using the index, serial number or current address

 Retrieve the serial number using the index or address

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 12

 Retrieve the index using the serial number or address

 Blink the LED on a specific sensor

 Determine if an address conflict exists

 Determine if changing an address will cause an address conflict

Identify the Instrument
Before using any of the commands, you must first identify it. You may identify it by address, serial
number, or index.

 Address. A user-set identifier stored in the instrument's memory. The user has complete control over

the address, and can assign any legitimate address (1-255) to any instrument. Using the address is the
recommended way to identify an instrument, because this eliminates the need to change the
programming code if the original instrument is being replaced. More importantly, almost all commands
require the instrument’s address, including getting, setting measurement attributes and making
measurements (over 80 of them). The address is stored in non-volatile memory, so it is not lost when the
instrument is disconnected or the system is powered down. Note that address conflicts may arise during
the process of reassigning instrument addresses.

Serial Number. This number is permanent and determined by the factory. It is stamped into the back of

the instrument. The address or index can be retrieved using the serial number. You can also use the
serial number to change the address and cause the LED to blink.

Index. A temporary logical descriptor determined by the system driver when the instrument is connected.

This is an arbitrary number that is assigned by order of identification. The index of the first instrument
detected by the system is 1. The index of the second instrument is 2 and so on. Typically, the index is
less useful than the address and serial number. The index is most useful when coupled with the function
call LB_SensorCnt. For instance, when LB_SensorCnt is called, if the instrument count is three, the first
instrument discovered will have an index of 1; the second instrument will have an index of 2; and the third
instrument will have an index of 3.

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 13

Setting the Instrument Address(es)
The instrument address may be set in one of three ways.

1. Using the Power Meter application.
2. Using the Sensor Manager application
3. Programmatically by making the appropriate function calls

To set the address using the Power Meter application.

1. Open the “Power Meter” application. This application should be visible in the Giga-tronics menu

(Start > Giga-tronics Inc >Power Meter Application).

2. After the software opens, Select “Set Address” command found under the Measurement Menu.
Note that the current Addr=6.

3. A “Change Address” information window will pop-up informing you of what will occur after
changing the address. Click “OK”.

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 14

4. After pressing “OK”, the “Set Device Address” window will pop-up. Enter the new address in the
New Address field. Then click on “OK”.

5. Another window will pop-up informing you to disconnect the and reconnect the sensor before
restarting the application. Click “OK” and the application will shut-down.

6. Disconnect and reconnect your sensor.
7. Restart the Power Meter application
8. Confirm that the sensor address shown at the top of the Power Meter window is the correct

address. The new address is now set and the Power Meter application may now be closed. The
address is set in non-volatile memory so losing power after the address is set or moving the
sensor from system to system is not an issue.

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 15

To set the address using the Sensor Manager application

1. Open the Sensor Manager application. This application is located in the Giga-tronics menu (Start
> Giga-tronics Inc >Sensor Manager). You will see a list of sensor(s) currently attached to your
computer. Each sensor is represented by an index, an address, and a serial number which is
stamped on the back of the sensor. In this example, only one sensor is attached to the PC and is
selected, which is indicated by the blue highlighting.

Notice that the current address is listed n the “From” field. In this case, the current address is 1.

2. To change from address “1” to address “6”, enter the new address in the “To” field and click on
the “Change” button.

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 16

3. After the “Change” button is clicked, the new address will be refreshed in the “From” field.

If there were several sensors connected, the “Blink LED” is a useful feature to identify which sensor is
chosen with the blue highlighting.

To set the address programmatically

The address can be set programmatically by using one of the following two functions.

1. LB_SetAddress_Idx - sets the address given the index. The index is assigned by the OS when
the unit is plugged in.

2. LB_SetAddress_SN – sets the address given the serial number, which is found on the
instruments case.

Make a Simple CW Measurement Example

The purpose of this section is to get you up and running quickly. We will cover the simplest case of
making a CW measurement using VB 6.0, VB.NET and C SHARP.

The following VB.6, VB.NET and C SHARP code makes a simple CW measurement. The VB.NET and C
SHARP were created using Microsoft Visual Studio 2010 Express. This code assumes that a single
sensor has been connected to your computer and has proven functional. If you are using a different
version of Visual Studio.NET, the VB.NET and C SHARP code may need some tweaking as a direct copy
and paste may not work. In any event, the changes should be minor.

NOTE: Before starting, install the Power Meter application to make sure the sensor is functional by
making a few basic measurements using the GUI.

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 17

1. Start the code by creating a default Windows application.
2. Place three buttons and one label on the window or form. Name the buttons as shown below:

 cmdGetAddress: Clicking this button uses the "LB_GetAddress_Idx" command. The name of
this command can be interpreted as "get the address using the index." In this case, the first
instrument is used, or the instrument with an index of 1.

 cmdInitialize: Clicking this button uses the "LB_InitializeSensor_Addr" command. The name of
this command can be interpreted as "initialize the instrument using the address". Initialization
causes the calibration constants and other information for the instrument to be transferred to the
computer.

 cmdMeasure: Clicking this button uses the "LB_CWMeasure" command. The name of this
command can be interpreted as “make a measurement”. The result of the measurement is
converted to text and placed in the label. This command requires the address acquired in the first
button click. It also requires that the instrument be initialized, as done in the second button click.
In this API, most commands are designed for use with the address.

3. Name the label lblCW.
4. Copy the appropriate set of code (or portions if you prefer) from the pages below.
5. Compile the application. Your form Window may look like the one below:

6. Run the application:
a. Click on the “Get Addr” button.
b. Click on the “Init” button. Wait for the message indicating the initializion is complete.

This typically takes about 5 seconds.
c. Click the “Measure” button. Since the sensor has been initialized, this button can be

clicked repeatively for many measurements.

Note : A few items that may be of interest to some programmers are:

 “Long” in VB 6.0 is equivalent to an “Integer” in VB.NET and “int” in C SHARP.

 The default ByRef/ByVal are switched when going from VB 6 to VB.NET and C SHARP. We have
taken the approach of explicitly including the ByRef/ByVal declarations in all code. We highly
recommend this practice.

 Structures in VB 6.0 allowed the embedding of fixed arrays. This is/was commonly used for
transferring complex data types. The exact capability has not been duplicated in VB.NET and C

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 18

SHARP. While VB.NET does have the following type of declaration that can be used inside a
structure:

<VBFixedArray(6)> Dim SerialNumber() As Byte

NOTE: If you are using a different version of Visual Studio.NET you may need to modify the code to
some extent.

Visual C# 2010 Express Code

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace WindowsFormsApplication1
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 cmdGetAddress.Click += new System.EventHandler(cmdGetAddress_Click);
 cmdInitialize.Click += new System.EventHandler(cmdInitialize_Click);
 cmdMeasure.Click += new System.EventHandler(cmdMeasure_Click);
 }

 [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
 public static extern int LB_SensorCnt();
 [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
 public static extern int LB_GetAddress_Idx(int addr);
 [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
 public static extern int LB_InitializeSensor_Addr(int addr);
 [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
 public static extern int LB_MeasureCW(int addr, ref double CW);

 public int m_Addr;

 private void cmdGetAddress_Click(System.Object sender, System.EventArgs e)
 {
 if (LB_SensorCnt() > 0)
 {
 m_Addr = LB_GetAddress_Idx(1);
 }
 }

 private void cmdInitialize_Click(System.Object sender, System.EventArgs e)
 {
 if (LB_InitializeSensor_Addr(m_Addr) > 0)

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 19

 {
 MessageBox.Show("initialization okay");
 }
 }

 private void cmdMeasure_Click(System.Object sender, System.EventArgs e)
 {
 double CW = 0; long rslt = 0;
 rslt = LB_MeasureCW(m_Addr, ref CW);
 if (rslt > 0)
 {
 lblCW.Text = String.Format("{0:0.00}", CW);
 }

 }

 }
}

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 20

Visual Basic 2010 Express Code

Public Class Form1

 Public Declare Function LB_SensorCnt Lib _

 "LB_API2.dll" () _

 As Integer

 Public Declare Function LB_GetAddress_Idx _

 Lib "LB_API2.dll" (_

 ByVal addr As Integer) _

 As Integer

 Public Declare Function LB_InitializeSensor_Addr _

 Lib "LB_API2.dll" (_

 ByVal addr As Integer) _

 As Integer

 Public Declare Function LB_MeasureCW _

 Lib "LB_API2.dll" (_

 ByVal addr As Integer, _

 ByRef CW As Double) As Integer

 Dim m_Addr As Integer

 Private Sub cmdGetAddress_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles cmdGetAddress.Click

 If LB_SensorCnt() > 0 Then

 m_Addr = LB_GetAddress_Idx(1)

 End If

 End Sub

 Private Sub cmdInitialize_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles cmdInitialize.Click

 If LB_InitializeSensor_Addr(m_Addr) > 0 Then

 MsgBox("Initialization OK")

 End If

 End Sub

 Private Sub cmdMeasure_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles cmdMeasure.Click

 Dim CW As Double, rslt As Long

 rslt = LB_MeasureCW(m_Addr, CW)

 If rslt > 0 Then lblCW.Text = Format(CW, "###0.0###")

 End Sub

End Class

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 21

VB 6.0 Code

Option Explicit

Private Declare Function LB_SensorCnt Lib _

 "LB_API2.dll" () _

 As Long

Private Declare Function LB_GetAddress_Idx _

 Lib "LB_API2.dll" (_

 ByVal addr As Long) _

 As Long

Private Declare Function LB_InitializeSensor_Addr _

 Lib "LB_API2.dll" (_

 ByVal addr As Long) _

 As Long

Private Declare Function LB_MeasureCW _

 Lib "LB_API2.dll" (_

 ByVal addr As Long, _

 ByRef CW As Double) As Long

Dim m_Addr As Long

Private Sub cmdGetAddress_Click()

 If LB_SensorCnt() > 0 Then

 m_Addr = LB_GetAddress_Idx(1)

 End If

End Sub

Private Sub cmdInitialize_Click()

 If LB_InitializeSensor_Addr(m_Addr) > 0 Then

 MsgBox ("Initialization OK")

 End If

End Sub

Private Sub cmdMeasure_Click()

 Dim CW As Double, rslt As Long

 rslt = LB_MeasureCW(m_Addr, CW)

 If rslt > 0 Then lblCW.Caption = Format(CW, "###0.0###")

End Sub

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 22

Command Groups
The following command group tables organize commands together by functionality and link each
command to the individual command, located in the Commands Listed in Alphabetical Order section of
this manual.
If a command has related commands, the related commands are indented to the primary command in the
table. Primary commands are listed in the Commands Listed in Alphabetical Order section, and in the
table of contents.

NOTE. Unless otherwise noted the following commands are valid for all instrument models.

CW Measurement Command Group
LB_MeasureCW
Makes continuous wave (CW) measurements. The value returned is in the units currently selected.

LB_MeasureCW_PF
Makes continuous wave (CW) measurements and evaluates the measurement relative to the current limit.
The value returned is in the units currently selected.

Initialization and Identification Command Group
LB_AddressConflictExists
Checks the address of all instruments that are connected to the system. If any of the addresses match, a
conflict is deemed to exist. If all the addresses are unique to the system, a conflict is deemed not to exist.

LB_BlinkLED_Addr
LB_BlinkLED_Idx
LB_BlinkLED_SN
Cause the instrument LED to blink four times.

LB_ChangeAddress
Changes the address of the device. The address is changed from “currentAddr” to “newAddr”.

LB_IsDeviceInUse_Addr
LB_IsDeviceInUse_Idx
LB_IsDeviceInUse_SN
Return a 1 if the device has been initialized and a 0 if the device has not been initialized by the calling
program or any other program.

LB_DriverVersion
Returns a 32 bit integer indicating the version of LB_API2.dll.

LB_GetFirmwareVersion
Returns a null-terminated string of chars indicating the firmware version.

LB_GetIndex_Addr
LB_GetIndex_SN
Return the index given to the serial number or address.

LB_GetModelNumber_Addr
LB_GetModelNumber_Idx

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 23

LB_GetModelNumber_SN
Return a value equating to a model number enumeration.

LB_GetSerNo_Addr
LB_GetSerNo_Idx
Return the serial number given the index or address.

LB_InitializeSensor_Addr
LB_InitializeSensor_Idx
LB_InitializeSensor_SN
Cause the instrument to be initialized.

LB_IsSensorConnected_Addr
LB_IsSensorConnected_SN
Determine if the specified instrument is connected. The query is based on the serial number or address.

LB_SensorCnt
Returns the number of instruments currently connected to the computer.

LB_SetAddress_Idx
LB_GetAddress_Idx
Return the address, given the index and vice versa. The index is assigned by the OS when the unit is
plugged in.

LB_SetAddress_SN
LB_GetAddress_SN
Return the address, given the serial number and vice versa.

LB_WillAddressConflict
Checks the address of all instruments connected to the system. If any of the addresses match, a conflict
is deemed to exist.

Pulse Measurement Command Group
NOTE. These commands are only valid for GT-8551B, GT-8552B, and GT-8555B

LB_MeasureBurst_DBM
Measures the peak power, minimum power and average power over a specified measurement interval or
burst. The measurement is made relative to a trigger.

LB_MeasurePulse
Makes pulse measurements. The measurement returns pulse power (average power in the pulse); peak
power (highest sample measured); average power; and duty cycle.

LB_MeasurePulse_PF
Makes pulse measurements just as LBMeasurePulse does, except that the pulse power (instead of peak
or average) is evaluated against the selected limit.

Pulse Setup Command Group
NOTE. These commands are only valid for GT-8551B, GT-8552B, and GT-8555B

LB_SetAutoPulseEnabled

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 24

LB_GetAutoPulseEnabled
Enable or disable the default or automatic pulse measurement criteria.

LB_SetPulseCriteria
LB_GetPulseCriteria
Set or get the pulse measurement criteria.

LB_SetPulseReference
LB_GetPulseReference
Configure the instrument for relative measurements during pulse measurements. (Other commands set a
reference for CW measurements.)

Pulse Profiling Gate Command Group
NOTE. These commands are valid only for the GT-8552B and the GT-8555B

PP_GatePositionIsValid
Determines whether the specified gate is valid. The gate index may be 0..4.

PP_GetGateCrestFactor
Returns the create factor (in dB) of the span in the analysis trace specified by the gate.

PP_GetGateDroop
Returns the droop of the span in the analysis trace specified by the gate. The droop will be the difference
in power between the area at beginning and end of the gate edges.

PP_GetGateDutyCycle
Returns the duty cycle (as a decimal) of span in the analysis trace specified by the gate.

PP_GetGateEndPosition
Returns the location, as an index in the analysis trace, of the right side of the specified gate.

PP_GetGateFallTime
Returns the fall time in microseconds of the pulse delineated by the selected gate.

PP_GetGateOverShoot
Returns the overshoot in dB.

PP_GetGatePeakPower
Returns the peak power measured of the analysis trace as defined by the gate edges.

PP_GetGatePRF
Returns the pulse repetition frequency (PRF) in Hertz, as defined by the inverse of the time between the
rising edges of the first two complete pulses present in the span defined by the gate (gateIdx).

PP_GetGatePRT
Returns the pulse repetition time (PRT) in microseconds using the same algorithm defined for PRF. The
sole difference is that time instead of frequency is returned.

PP_GetGatePulsePower
Returns average pulse power.

PP_GetGatePulseWidth
Measures the pulse width in microseconds.

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 25

PP_GetGateRiseTime
Returns rise time in microseconds.

PP_SetGateStartEndPosition
PP_SetGateStartEndTime
PP_GetGateStartEndTime
PP_SetGateStartPosition
PP_GetGateStartPosition
PP_SetGateEndPosition
PP_GetGateEndPosition
PP_SetGateStartTime
PP_GetGateStartTime
PP_SetGateEndTime
PP_GetGateEndTime
Sets or gets the gate start (left side) and/or end (right side) in terms of trace index or time.

Pulse Profiling Marker Command Group
NOTE. These commands are valid only for the GT-8552B and the GT-8555B

PP_GetMarkerAmp
Returns the amplitude of the trace at the point indicated by the marker.

PP_GetMarkerDeltaAmp
Returns the difference in amplitude between the normal marker and the
delta marker in dBm.

PP_MarkerPosIsValid
Returns the state of the selected marker.

PP_MarkerToPk
PP_MarkerToLowestPk
PP_MarkerToFirstPk
PP_MarkerToLastPk
PP_MarkerPrevPk
PP_MarkerNextPk
PP_MarkerPkHigher
PP_MarkerPkLower
Set one of five markers (0<=mrkIdx<=4) to the position specified in the command.

PP_SetMarkerDeltaTime
PP_GetMarkerDeltaTime
Sets or gets the positions the selected marker in microseconds.

PP_SetMarkerMode
PP_GetMarkerMode
Sets or gets the marker mode to on, normal or delta marker.

PP_SetMarkerPosition
PP_GetMarkerPosition

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 26

PP_SetMarkerPositionTime
PP_GetMarkerPositionTime

Pulse Profiling Setup Command Group
NOTE. These commands are valid only for the GT-8552B and the GT-8555B

PP_GetPulseEdgesTime
PP_GetPulseEdgesPosition
Return the index of the leading and trailing edges of the pulse containing the peak defined by pkTime or
pkIdx.

PP_SetAvgMode
PP_GetAvgMode
PP_GetTraceAvgs
PP_ResetTraceAveraging
Set, auto-set or manual reset the averaging mode.

PP_SetAvgResetSens
PP_GetAvgResetSens
Set or get the criteria used to reset the averaging when the
averaging mode is AVG_AUTO_RESET (see PP_SetAvgMode and
PP_GetAvgMode).

PP_SetClosestSweepTimeUSEC
Sets the sweep time to the fixed sweep time closest to the sweep time
sent (in microseconds) to the command.

PP_SetFilter
PP_GetFilter
Sets or gets the enumeration associated with the current filter settings.

PP_SetGateMode
PP_GetGateMode
Sets or gets the gate mode.

PP_SetMeasurementThreshold
PP_GetMeasurementThreshold
Sets or gets the measurement threshold. The measurement threshold, along with the peak criteria,
affects a number of measurement commands, especially the peak commands.

PP_SetPoles
PP_GetPoles
Sets or gets the number of poles in the current filter.

PP_SetSweepDelay
PP_GetSweepDelay
Sets or gets the sweep delay in microseconds. Sweep delay is the time between the trigger and the start
of data acquisition.

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 27

Trigger Command Group
LB_SetTTLTriggerInEnabled
LB_GetTTLTriggerInEnabled
LB_SetTTLTriggerInInverted
LB_GetTTLTriggerInInverted
LB_SetTTLTriggerInTimeOut
LB_GetTTLTriggerInTimeOut
Control or read back the state of the external trigger input. The trigger-in can be enabled, disabled or
inverted; or the timeout value can be set or read.

LB_SetTTLTriggerOutEnabled
LB_GetTTLTriggerOutEnabled
LB_SetTTLTriggerOutInverted
LB_GetTTLTriggerOutInverted
Control the trigger output of the device. It can be enabled, disabled, inverted or normal.

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 28

Commands Listed in Alphabetical Order
The following commands are exported from a Visual C++ 2005 project. The calling convention used is
_stdcall. The declarations are shown in various examples for C++, C#, VB 6.0, and/or VB.NET.
 The declarations for the various programming environments are in the application directory and in
various subdirectories. These files include the type or structure declarations and some useful constants.

The files are named as follows:
C# LB_API2_Declarations.cs
VB.NET LB2_Declarations.vb

NOTE. Pre-allocated buffers are often required when strings (such as serial number) or arrays are being
passed back from the driver by reference (or pointer).

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 29

LB_AddressConflictExists
This command checks the address of all instruments that are connected to the system. If any of the
addresses match, a conflict is deemed to exist. If all the addresses are unique to the system, a conflict is
deemed not to exist.

Pass Parameters:
None

Returned Values:
Conflict Exists = 1
Conflict does not exit = 0
Error < 0

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_AddressConflictExists();
VB 6.0
Public Declare Function LB_AddressConflictExists _
Lib "LB_API2.dll" ()
 _ As Long
VB.NET
Public Declare Function LB_AddressConflictExists _
Lib "LB_API2.dll" () _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_AddressConflictExists();

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 30

LB_BlinkLED_Addr (and related commands)

Related Commands:
LB_BlinkLED_Idx
LB_BlinkLED_SN
These commands cause the instrument LED to blink four times. This is intended to allow the user to ID
the instrument physically.

Pass Parameters:
Index, serial number or address

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_BlinkLED_SN(char* SN);
LB_API2 long _stdcall LB_BlinkLED_Idx(long idx);
LB_API2 long _stdcall LB_BlinkLED_Addr(long addr);
VB 6.0
Public Declare Function LB_BlinkLED_SN _
Lib "LB_API2.dll" (_
ByVal sn As String) _
As Long
Public Declare Function LB_BlinkLED_Idx _
Lib "LB_API2.dll" (_
ByVal idx As Long) _
As Long
Public Declare Function LB_BlinkLED_Addr _
Lib "LB_API2.dll" (_
ByVal addr As Long) _
As Long
VB.NET
Public Declare Function LB_BlinkLED_SN _
Lib "LB_API2.dll" (_
ByVal sn As String) _
As Integer
Public Declare Function LB_BlinkLED_Idx _
Lib "LB_API2.dll" (_
ByVal idx As Integer) _
As Integer
Public Declare Function LB_BlinkLED_Addr _
Lib "LB_API2.dll" (_
ByVal addr As Integer) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_BlinkLED_SN(
string sn);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_BlinkLED_Idx(
int idx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_BlinkLED_Addr(
int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 31

LB_ChangeAddress
This command changes the address of the device. The address is changed from “currentAddr” to
“newAddr”. The address is retained in non-volatile memory.

Pass Parameters:
currentAddr = 1 to 255
newAddr = 1 to 255

Returned Values:
Success: > 0
Failure: < 0

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_ChangeAddress(long currentAddr, long newAddr);
VB 6.0
Public Declare Function LB_ChangeAddress _
Lib "LB_API2.dll" (_
ByVal currentAddr As Long, _
ByVal newAddr As Long) _
As Long
VB.NET
Public Declare Function LB_ChangeAddress _
Lib "LB_API2.dll" (_
ByVal currentAddr As Integer, _
ByVal newAddr As Integer) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_ChangeAddress(

int currentAddr,
int newAddr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 32

LB_DriverVersion
This command returns a 32 bit integer indicating the version of LB_API2.dll.

Pass Parameters:
None

Returned Values:
The least two significant digits indicate the revision number. The next two least significant digits represent
the minor version.
The most significant digit(s) represent the major version. As of this writing, the value returned is 45030, so
that:

 30 is the revision,

 50 is the minor version,

 4 is the major version.

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
Long LB_DriverVersion(void)
VB.NET
Public Declare Function LB_DriverVersion Lib “LB_API2.dll” () as Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_DriverVersion();

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 33

LB_GetFirmwareVersion
This command returns a null-terminated string of chars indicating the firmware version.

Pass Parameters:
 addr is a 32 bit integer containing the address of the device.

 buff is a pointer to an array or buffer of chars. The characters must be allocated by the calling
command. The buffer must be at least 14 chars long and should contain the value zero.

 buffLen indicates the length of buff. The length of buff must be at least 14 chars.

Returned Values:
A return value of greater than zero indicates success. A return value of less than zero indicates failure.
The version information is returned in buff. The current value of buff is “1.28 07/08/08”. The first part
(1.28) indicates the major and minor version. The second part indicates the date.

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
Long LB_GetFirmwareVersion(long addr, char* buff, long buffLen);
VB.NET
Public Declare Function LB_GetFirmwareVersion Lib "LB_API2.dll" (ByVal addr As Integer, ByRef buff As
Byte, ByVal buffLen As Integer) As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetFirmwareVersion(int addr, ref byte buff, int buffLen);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 34

LB_GetIndex_Addr (and related commands)

Related Commands:
LB_GetIndex_SN
These commands return the index given to the serial number or address.

Pass Parameters:
Serial number or address

Returned Values:
Success: > Index greater than 0
Error: <= 0

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_GetIndex_SN(char* SN);
LB_API2 long _stdcall LB_GetIndex_Addr(long addr);
VB 6.0
Public Declare Function LB_GetIndex_SN _
Lib "LB_API2.dll" (_
ByVal sn As String) _
As Long
Public Declare Function LB_GetIndex_Addr _
Lib "LB_API2.dll" (_
ByVal addr As Long) _
As Long
VB.NET
Public Declare Function LB_GetIndex_SN _
Lib "LB_API2.dll" (_
ByVal sn As String) _
As Integer
Public Declare Function LB_GetIndex_Addr Lib "LB_API2.dll" (_
ByVal addr As Integer) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetIndex_SN(
string sn);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetIndex_Addr(

int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 35

LB_GetModelNumber_Addr (and related commands)
Related Commands:
LB_GetModelNumber_Idx
LB_GetModelNumber_SN
These commands return a value equating to a model number enumeration. In each case, the serial
number, index or address must be passed. The suffix (_SN, _Idx or Addr) denotes the type of pass
parameter.

Pass Parameters:
Serial number, address or index.

Returned Values:
Returned values are -1 to 113 as denoted by the enumerations below.

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
enum MODEL_NUMBER {
Unknown = -1,
GT-8888A = 66
GT-8551A = 67
GT-8552A = 68
GT-8553A = 69
GT-8554A = 70
GT-8555A = 71
GT-8551B = 77
GT-8552B = 78
GT-8553B = 79
GT-8554B = 80
GT-8555B = 81
};
LB_API2 long _stdcall LB_GetModelNumber_SN(char* SN,
MODEL_NUMBER* modelNumber);
LB_API2 long _stdcall LB_GetModelNumber_Idx(long idx,
MODEL_NUMBER* modelNumber);
LB_API2 long _stdcall LB_GetModelNumber_Addr(long addr,
MODEL_NUMBER* modelNumber);

VB 6.0
Public Enum MODEL_NUMBER ' Enumeration of model numbers
Unknown = -1
GT-8888A = 66
GT-8551A = 67
GT-8552A = 68
GT-8553A = 69
GT-8554A = 70
GT-8555A = 71
GT-8551B = 77
GT-8552B = 78
GT-8553B = 79
GT-8554B = 80
GT-8555B = 81
End Enum
Public Declare Function LB_GetModelNumber_SN _
Lib "LB_API2.dll" (_
ByVal sn As String, _

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 36

ByRef modelNumber As MODEL_NUMBER) _
As Long
Public Declare Function LB_GetModelNumber_Idx _
Lib "LB_API2.dll" (_
ByVal idx As Long, _
ByRef modelNumber As MODEL_NUMBER) _
As Long
Public Declare Function LB_GetModelNumber_Addr _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef modelNumber As MODEL_NUMBER) _
As Long
VB.NET
Public Enum MODEL_NUMBER
Unknown = -1
GT-8888A = 66
GT-8551A = 67
GT-8552A = 68
GT-8553A = 69
GT-8554A = 70
GT-8555A = 71
GT-8551B = 77
GT-8552B = 78
GT-8553B = 79
GT-8554B = 80
GT-8555B = 81
End Enum
Public Declare Function LB_GetModelNumber_SN _
Lib "LB_API2.dll" (_
ByVal sn As String, _
ByRef modelNumber As MODEL_NUMBER) _
As Integer
Public Declare Function LB_GetModelNumber_Idx _
Lib "LB_API2.dll" (_
ByVal idx As Integer, _
ByRef modelNumber As MODEL_NUMBER) _
As Integer
Public Declare Function LB_GetModelNumber_Addr _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef modelNumber As MODEL_NUMBER) _
As Integer
C#
public enum MODEL_NUMBER
{ // Enumeration of model numbers
Unknown = -1,
GT-8888A = 66
GT-8551A = 67
GT-8552A = 68
GT-8553A = 69
GT-8554A = 70
GT-8555A = 71
GT-8551B = 77
GT-8552B = 78
GT-8553B = 79
GT-8554B = 80

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 37

GT-8555B=81
}
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetModelNumber_SN(
string sn,
ref MODEL_NUMBER modelNumber);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetModelNumber_Idx(
int idx,
ref MODEL_NUMBER modelNumber);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetModelNumber_Addr(
int addr,

ref MODEL_NUMBER modelNumber);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 38

LB_GetSerNo_Addr (and related commands)

Related Commands:
LB_GetSerNo_Idx
These commands return the serial number given the index or address. These and other similar
commands require a pre-allocated buffer.
Pass Parameters:
Index or address

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_GetSerNo_Idx(long idx, char* SN);
LB_API2 long _stdcall LB_GetSerNo_Addr(long addr, char* SN);
VB 6.0
Public Declare Function LB_GetSerNo_Idx _
Lib "LB_API2.dll" (_
ByVal idx As Long, _
ByVal sn As String) _
As Long
Public Declare Function LB_GetSerNo_Addr _
Lib "LB_API2.dll" (_
ByVal address As Long, _
ByVal sn As String) _

As Long
VB.NET
Public Declare Function LB_GetSerNo_Idx _
Lib "LB_API2.dll" (_
ByVal idx As Integer, _
ByVal sn As String) _
As Integer
Public Declare Function LB_GetSerNo_Addr _
Lib "LB_API2.dll" (_
ByVal address As Integer, _
ByVal sn As String) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetSerNo_Idx(int idx, string sn);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]

public static extern int LB_GetSerNo_Addr(int address, string sn);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 39

LB_InitializeSensor_Addr (and related commands)

Related Commands:
LB_Ini t ia l izeSensor_Idx
LB_Ini t ia l izeSensor_SN
These commands cause the instrument to be initialized. This includes downloading the calibration factors
and other data required to operate the instrument. Initialization normally takes about five seconds.

Pass Parameters:
Index, serial number or address

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_InitializeSensor_SN(char* SN);
LB_API2 long _stdcall LB_InitializeSensor_Idx(long idx);
LB_API2 long _stdcall LB_InitializeSensor_Addr(long addr);
VB 6.0
Public Declare Function LB_InitializeSensor_SN _
Lib "LB_API2.dll" (_
ByVal sn As String) _
As Long
Public Declare Function LB_InitializeSensor_Idx _
Lib "LB_API2.dll" (_
ByVal idx As Long) _
As Long
Public Declare Function LB_InitializeSensor_Addr _
Lib "LB_API2.dll" (_
ByVal addr As Long) _

As Long
VB.NET
Public Declare Function LB_InitializeSensor_SN _
Lib "LB_API2.dll" (_
ByVal sn As String) _
As Integer
Public Declare Function LB_InitializeSensor_Idx _
Lib "LB_API2.dll" (_
ByVal idx As Integer) _
As Integer
Public Declare Function LB_InitializeSensor_Addr _
Lib "LB_API2.dll" (_
ByVal addr As Integer) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_InitializeSensor_SN(
string sn);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_InitializeSensor_Idx(
int idx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_InitializeSensor_Addr(

int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 40

LB_IsDeviceInUse_Addr (and related commands)

Related Commands:
LB_IsDeviceInUse_Idx
LB_IsDeviceInUse_SN
These commands return a 1 if the device has been initialized and a 0 if the device has not been initialized
by the calling program or any other program. These functions are intended to be used in multi-threaded
applications. Therefore, if an instrument has already been initialized, it can be an indication that the
instrument is in use by another application.

Pass Parameters:
addr – address of the device
idx – the index of the device (generally not known)
SN – the serial number of the device

Returned Values:
1 if the device has been initialized, and a 0 if the device has not been initialized

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
long LB_IsDeviceInUse_Idx(long idx);
long LB_IsDeviceInUse_Addr(long addr);
long LB_IsDeviceInUse_SN(char* SN);
VB.NET
Public Declare Function LB_IsDeviceInUse_Idx Lib "LB_API2.dll"
(ByVal idx As Integer)
As Integer
Public Declare Function LB_IsDeviceInUse_Addr Lib "LB_API2.dll"
(ByVal addr As Integer)
As Integer
Public Declare Function LB_IsDeviceInUse_SN Lib "LB_API2.dll"
(ByVal sn As String)
As Integer
C#
int LB_IsDeviceInUse_Idx(int idx);
int LB_IsDeviceInUse_Addr(int addr);

int LB_IsDeviceInUse_SN(ref byte SN);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 41

LB_IsSensorConnected_Addr (and related commands)

Related Commands:
LB_IsSensorConnected_SN
These commands determine if the specified instrument is connected. The query is based on the serial
number or address.
The omission of “LB_IsSensorConnected_Idx” is not an error. The LB_SensorCnt() does the job more
simply and directly.

Pass Parameters:
Serial number or address.

Returned Values:
Serial Number is connected: 1
Serial Number is NOT connected: 0
Error < 0

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_IsSensorConnected_SN(char* SN);
LB_API2 long _stdcall LB_IsSensorConnected_Addr(long addr);
VB 6.0
Public Declare Function LB_IsSensorConnected_SN _
Lib "LB_API2.dll" (_
ByVal sn As String) _
As Long
Public Declare Function LB_IsSensorConnected_Addr _
Lib "LB_API2.dll" (_
ByVal addr As Long) _

As Long
VB.NET
Public Declare Function LB_IsSensorConnected_SN _
Lib "LB_API2.dll" (_
ByVal sn As String) _
As Integer
Public Declare Function LB_IsSensorConnected_Addr _
Lib "LB_API2.dll" (_
ByVal addr As Integer) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_IsSensorConnected_SN(
string sn);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_IsSensorConnected_Addr(

int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 42

LB_MeasureBurst_DBM
This command measures the peak power, minimum power and average power over a specified
measurement interval or burst. The measurement is made relative to a trigger. The trigger is either an
internal automatic trigger or and external TTL trigger. The internal trigger triggers on the rising edge of the
first pulse. The measurement starts after a specified delay and continues for the specified measurement
time. Both are specified in microseconds with a resolution (or increments) or 2 microseconds.

Pass Parameters:
addr – address of the device
delayUSEC – the delay of the measurement relative to the trigger (0, 2, 4… μs)
measTimeUSEC – the measurement time (2, 4, 6 … μs)
trgInt – determines if the trigger is internal-automatic or external TTL
pk – returns the maximum or peak value encountered during the measurement time.
avg – returns the average power during the measurement time
min – returns the minimum power level encountered during the measurement time

NOTE. delayUSEC + measTimeUSEC must be less than 1,000,000 μ s or 1 second.

Returned Values:
Success: > 1
Failure: <= 0

Command Group:
Pulse Measurement

Sample Code Declarations:
C++
long LB_MeasureBurst_DBM(long addr, long delayUSEC, long measTimeUSEC, long trgInt, double* pk,
double *avg, double *min);
VB.NET
Public Declare Function LB_MeasureBurst_DBM Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal delayUSEC As Integer, _
ByVal measTimeUSEC As Integer, _
ByVal trgInt As Integer, _
ByRef pk As Double, _
ByRef avg As Double, _
ByRef min As Double) As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
int LB_MeasureBurst_DBM(
int addr,
int delayUSEC,
int measTimeUSEC,
int trgInt,
ref double pk,
ref double avg,
ref double min);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 43

LB_MeasureCW
This command makes CW measurements. The value returned is in the units currently selected. The time
to make this measurement can vary widely. Measurement time in particular depends on the setting of
averaging. Typical measurement times are about 0.3 to 1.0 ms per buffer. Each buffer contains about 120
averages so that a measurement for 100 buffers (averaging set to 100) would take 30 to 100 ms. Another
setting that affects the measurement time is anti-aliasing. The measurement time is about 40% greater
with anti-aliasing on than with anti-aliasing off. Anti-aliasing is generally required if the baseband content
(or demodulated signal) has a frequency above 200 kHz. Finally, getting an accurate measurement
requires that the frequency be set.

Other commands that may be of interest are:

 LB_SetFrequency

 LB_GetFrequency

 LB_SetMeasurementPowerUnits

 LB_GetMeasurementPowerUnits

 LB_SetAntiAliasingEnabled

 LB_GetAntiAliasingEnabled

 LB_SetAverages

 LB_GetAverages

Pass Parameters:
Address and CW

Returned Values:
Success: > 0
Error: <= 0

Command Group:
CW Measurement

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_MeasureCW(long addr, double* CW);
VB 6.0 Public Declare Function LB_MeasureCW _
Lib "LB_API2.dll" (_
ByVal addr As Long, _

ByRef CW As Double) As Long
VB.NET
Public Declare Function LB_MeasureCW _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef CW As Double) As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_MeasureCW(
int addr,

ref double CW);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 44

LB_MeasureCW_PF
This command makes CW measurements, and evaluates the measurement relative to the current limit.
The value returned is in the units currently selected. The measurement time affects for
LB_MeasureCW_PF are the same as LB_MeasureCW. Additionally, the limits should be set up. There
are two types of limits: single-sided limits and double-sided limits. If the
limits are set in one unit and the measurement is taken in another unit, the units are converted to a
common base unit and then a comparison is made.
Other commands of interest in addition to the commands listed in LB_MeasureCW are:

 LB_SetLimitEnabled

 LB_SetSingleSidedLimit

 LB_SetDoubleSidedLimit

 LB_GetSingleSidedLimit

 LB_GetDoubleSidedLimit

Pass Parameters:
Address, CW and a PASS_FAIL_RESULT (long)

Returned Values:
Success: > 0
Error: <= 0

Command Group:
CW Measurement

Sample Code Declarations:
C++
 enum PASS_FAIL_RESULT
{
PASS= 0,
FAIL_LOW= 1,
FAIL_HIGH= 2,
FAIL_BETWEEN_LIMIT_EXC= 3,
FAIL_BETWEEN_LIMIT_INC= 4,
NO_DETERMINATION = 5
};
LB_API2 long _stdcall LB_MeasureCW_PF(
long addr,
double* CW,
PASS_FAIL_RESULT* PF);
// pass, measured value within limits
// failed, measured value too low
// failed, measured value too high
// failed between limits
// failed between limits
// no determination made,
// possible reasons include but are
// not limited to the following reasons:
// - limits are not enabled
// - limits unspecified at freq
// - measurement not made
VB 6.0
Public Enum PASS_FAIL_RESULT
PASS = 0
FAIL_LOW = 1
FAIL_HIGH = 2
FAIL_BETWEEN_LIMIT_EXC = 3
FAIL_BETWEEN_LIMIT_INC = 4
NO_DETERMINATION = 5

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 45

End Enum
Declare Function LB_MeasureCW_PF _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef CW As Double, _
ByRef pf As PASS_FAIL_RESULT) _

As Long
VB.NET
Public Enum PASS_FAIL_RESULT
PASS = 0
FAIL_LOW = 1
FAIL_HIGH = 2
FAIL_BETWEEN_LIMIT_EXC = 3
FAIL_BETWEEN_LIMIT_INC = 4
NO_DETERMINATION = 5
End Enum
Public Declare Function LB_MeasureCW_PF _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef CW As Double, _
ByRef pf As PASS_FAIL_RESULT) _
As Integer
' pass measured value within limits
' failed measured value too low
' failed measured value too high
' failed between limits
' failed between limits
' no determination made possible reasons include
' but are not limited to the following reasons:
' - limits are not enabled
' - limits are not specified
' -validmeasurement not made (timeout?)
C#
public enum PASS_FAIL_RESULT
{
PASS = 0,
FAIL_LOW = 1,
FAIL_HIGH = 2,
FAIL_BETWEEN_LIMIT_EXC = 3,
FAIL_BETWEEN_LIMIT_INC = 4,
NO_DETERMINATION = 5,
// not limited to the following reasons:
// - limits are not enabled
// - limits are not specified
// - valid measurement not made (timeout?)
}
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_MeasureCW_PF(
int addr,
ref double CW,

ref PASS_FAIL_RESULT pf);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 46

LB_MeasurePulse
This command makes pulse measurements. The measurement returns pulse power (average power in
the pulse); peak power (highest sample measured); averge power; and duty cycle. These are direct
measurements. They are made using the number of buffers (averages) and the units specified using the
LB_SetMeasurementPowerUnits command. Much of the test that applies to CW measurement time also
applies to pulse measurements.

NOTE. When using this command, the duty cycle is measured, it is not calculated. This is in contrast to
the LB_SetDutyCycle commands that rely on an assumed duty cycle for making pulse power
measurements.Since this command produces direct pulse measurements, if the stimulus parameters
change (duty cycle, peak power or pulse power) the reading returned by this measurement will also
change. There are a number of items that can affect these measurements. One is the pulse peak criteria.
Pulse peak criteria is relative to measured peak value. The changes will affect the duty cycle and pulse
power. The affects will be most pronounced for pulses that have sloped rising and falling edges.
While peak measurement results can be obtained as low as -60dBm (or less), and at rates as fast as
3MHz with pulse widths less than 250 μs, the best measurements require some care. For best results,
make pulse measurements when the pulse power is about 6dB above the peak noise, with averages set
from about 50 to 100. The best way to determine peak noise is to make a peak measurement with the
signal off, and then examine the peak power readings. It is optimal if the pulse measurement is 6dB
higher than the peak power with the power turned off - and other limits are not breached.
Finally, as the duty cycle decreases, averaging will need to be increased; and as PRF increases, the
number of averages can be decreased. A good starting point is about 100 buffers or averages for a PRF
of 10 kHz and a duty cycle of 10%. Adjust the averages inversely proportional to PRF and duty cycle - so
if PRF doubles, you might be able to cut the averages by half. However, as a rule of thumb, it is a good
idea to keep the number of averages above 50.

Other commands of interest in addition to the commands listed in LB_MeasurePulse are:

 LB_SetAutoPulseEnabled

 LB_GetAutoPulseEnabled

 LB_SetPulseCriteria

 LB_GetPulseCriteria

Pass Parameters:
Address, pulse power, peak power, average power and duty cycle. The last four elements should be
provided by reference.

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Pulse Measurement

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_MeasurePulse(long addr,
double* pulse,
double* peak,
double* average,
double* dutyCycle);
VB 6.0
Public Declare Function LB_MeasurePulse _
Lib "LB_API2.dll" (
ByVal addr As Long, ByRef pulse As Double,
ByRef peak as Double,
ByRef average as Double,
ByRef dutyCycle as Double)

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 47

As Long
VB.NET
Public Declare Function LB_MeasurePulse _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef pulse As Double, _
ByRef peak As Double, _
ByRef average As Double, _
ByRef dutyCycle As Double) As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_MeasurePulse(
int addr,
ref double pulse,
ref double peak,
ref double average,ref double dutyCycle);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 48

LB_MeasurePulse_PF
This command makes pulse measurements just as LBMeasurePulse does. This is coupled with a
pass/fail judgement like the LB_MeasureCW_PF function. The only difference is that the pulse power
(instead of peak or average) is evaluated against the selected limit. Refer to the CW and Pulse
measurement descriptions for more information.
Other commands of interest:

 LB_MeasureCW

 LB_MeasureCW_PF

 LB_MeasurePulse

Pass Parameters:
Address, pulse power, peak power, average power, duty cycle and pass/fail. The last five elements
should be provided by reference or pointer.

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Pulse Measurement

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_MeasurePulse_PF(long addr,
double* pulse,
double* peak,
double* average,
double* dutyCycle,
PASS_FAIL_RESULT* PF);
VB 6.0
Public Declare Function LB_MeasurePulse_PF _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef pulse As Double, _
ByRef peak As Double, _
ByRef average As Double, _
ByRef dutyCycle As Double, _
ByRef pf As PASS_FAIL_RESULT) _

As Long

VB.NET
Public Declare Function LB_MeasurePulse_PF _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef pulse As Double, _
ByRef peak As Double, _
ByRef average As Double, _
ByRef dutyCycle As Double, _
ByRef pf As PASS_FAIL_RESULT) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_MeasurePulse_PF(int addr,
ref double pulse,
ref double peak,
ref double average,
ref double dutyCycle,

ref PASS_FAIL_RESULT pf);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 49

LB_ResetRegStates (and related commands)

Related Commands:
LB_ResetCurrentState
These commands allow the user to cause either the current state or the state information held in the
save/recall registers to be reset.

Pass Parameters:
addr – address of the device

Returned Values:
Success: >=1
Failure: < 0

Command Group:
Save/Recall

Sample Code Declarations:
C++
long LB_ResetCurrentState(long addr);
long LB_ResetRegStates(long addr);
VB.NET
Public Declare Function LB_ResetCurrentState Lib "LB_API2.dll"
(ByVal addr As Integer) As Integer
Public Declare Function LB_ResetRegStates Lib "LB_API2.dll"
(ByVal addr As Integer) As Integer
C#
System.Runtime.InteropServices.DllImport("LB_API2.dll")]
Int LB_ResetCurrentState(int addr);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]

Int LB_ResetRegStates(int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 50

LB_ReadStateFromINI (and related commands)

Related Commands:
LB_WriteStateToINI
These commands cause the current state, including all numbered registers to be written to an INI file. The
resulting INI file is located in the directory of execution. The name of the INI file will be the model number
concatenated with the serial number separated by and underscore. For example, a GT-8552B with a
serial number of 012345 would result in an file named GT8552B_012345.INI. The parameters and values
are written in text form so they are human-readable.

Pass Parameters:
addr – address of the device

Returned Values:
Success: >=1
Failure: < 0

Command Group:
Save/Recall

Sample Code Declarations:
C++
long LB_ReadStateFromINI(long addr);
long LB_WriteStateToINI(long addr);
VB.NET
Public Declare Function LB_WriteStateToINI Lib "LB_API2.dll"
(ByVal addr As Integer)
As Integer
Public Declare Function LB_ReadStateFromINI Lib "LB_API2.dll"
(ByVal addr As Integer)
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
int LB_ReadStateFromINI(int addr);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]

int LB_WriteStateToINI(int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 51

LB_SensorCnt
This command returns the number of instruments currently connected to the computer.

Pass Parameters:
None

Returned Values:
Success: The number of instruments connected to the PC. The number will be between 0 and 16
Failure: Any number < 0

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_SensorCnt();
VB 6.0
Public Declare Function LB_SensorCnt Lib "LB_API2.dll"
() As Long
VB.NET
Public Declare Function LB_SensorCnt Lib "LB_API2.dll" () As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]

public static extern int LB_SensorCnt();

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 52

LB_SensorList
This command returns a description for each instrument. The user must ensure that an array of
instrument descriptions have been properly allocated. The number of descriptions returned will be
equivalent to the number returned in LB_SensorCnt. Note the differences in the declaration of the
structures. Converting the byte data to a more sensible structure is
demonstrated in the address management utilities.

Pass Parameters:
A properly sized array of instrument descriptions.

Returned Values:
Success: > 0, 1 plus the number if items
Failure:< 0

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
struct SensorDescrption
{
long DeviceIndex; // 1..n
long DeviceAddress; // 1..255
char SerialNumber[7]; // zero terminated 6 char string
};
LB_API2
long _stdcall LB_
SensorList(SensorDescrption* SD,
long cnt)
VB 6.0
Public Type SDByte
DeviceIndex As Long
DeviceAddress As Long
SerialNumber(0 To 6) As Byte
End Type
Public Declare Function LB_SensorList Lib "LB_API2.dll" (_
ByRef SD As SDByte, _
ByVal cnt As Long) _

As Long
VB.NET
Public Structure SDByte
Dim DeviceIndex As Integer
Dim DeviceAddress As Integer
Dim SNByte0, _
SNByte1, _
SNByte2, _
SNByte3, _
SNByte4, _
SNByte5, _
SNByte6 As Byte
End Structure
Public Declare Function LB_SensorList Lib "LB_API2.dll" (_
ByRef sd As SDByte, _
ByVal cnt As Integer) _
As Integer
C# public struct SDByte
{
public int DeviceIndex;

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 53

public int DeviceAddress;
public byte SNByte0, SNByte1, SNByte2, SNByte3, SNByte4, SNByte5, SNByte6;
}
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SensorList(
ref SDByte sd,

int cnt);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 54

LB_Set75OhmsEnabled (and related commands)

Related Commands:
LB_Get75OhmsEnabled
These commands are used to correct measurements made using a minimum loss pad. Minimum loss
pads (sometimes referred to as L-pad attenuators) are used to match 75 ohm systems to 50 ohm
systems. The correction is about 5.72 dB.

Pass Parameters:
addr – address of the device
st – indicates the state of extended averaging, 0 = off, 1 = on,

Returned Values:
Success: >=1
Failure: < 0

Command Group:
Setup

Sample Code Declarations:
C++
long LB_Get75OhmsEnabled(long addr, enum FEATURE_STATE* st);
long LB_Set75OhmsEnabled(long addr, enum FEATURE_STATE st);
VB.NET
Public Declare Function LB_Get75OhmsEnabled Lib "LB_API2.dll"
(ByVal addr As Integer,
ByRef st As FEATURE_STATE) As Integer
Public Declare Function LB_Set75OhmsEnabled Lib "LB_API2.dll"
(ByVal addr As Integer,
ByVal st As FEATURE_STATE) As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
Int LB_Get75OhmsEnabled(int addr, ref FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]

Int LB_Set75OhmsEnabled(int addr, FEATURE_STATE st);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 55

LB_SetAddress_Idx (and related commands)

Related Commands:
LB_GetAddress_Idx
These commands return the address, given the index and vice versa. The index is assigned by the OS
when the unit is plugged in.

Pass Parameters:
The index is passed, which will normally be between 1 and 16. In LB_SetAddress_Idx, the address is also
passed and valid values are between 1 and 255.

Returned Values:
Success: > The address between 1 and 255 for getting the address and >0 for setting the address
Failure: < 0

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_GetAddress_Idx(long idx);
LB_API2 long _stdcall LB_SetAddress_Idx(long idx, long addr);
VB 6.0
Public Declare Function LB_GetAddress_Idx _
Lib "LB_API2.dll" (_
ByVal addr As Long) _
As Long
Public Declare Function LB_SetAddress_Idx _
Lib " LB_API2.dll" (_
ByVal idx As Long, _
ByVal addr As Long) _

As Long
VB.NET
Public Declare Function LB_GetAddress_Idx _
Lib "LB_API2.dll" (_
ByVal addr As Integer) _
As Integer
Public Declare Function LB_SetAddress_Idx _
Lib "LB_API2.dll" (_
ByVal idx As Integer, _
ByVal addr As Integer) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetAddress_Idx(int addr);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]

public static extern int LB_SetAddress_Idx(int idx, int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 56

LB_SetAddress_SN (and related commands)

Related Commands:
LB_GetAddress_SN
These commands return the address, given the serial number and vice versa.

Pass Parameters:
The serial number is passed in both cases. It should be six characters in length, plus one character for
the zero termination. In LB_SetAddress_SN, the address is also passed.

Returned Values:
Success: > The address between 1 and 255
Failure: < 0

Command Group:
Initialization and Identification

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_GetAddress_SN
char* SN);
LB_API2 long _stdcall LB_SetAddress_SN(
char* SN,
long addr);
VB 6.0
Public Declare Function LB_GetAddress_SN _
Lib "LB_API2.dll" (_
ByVal sn As String) _
As Long
Public Declare Function LB_SetAddress_SN _
Lib "LB_API2.dll" (_
ByVal sn As String, _
ByVal addr As Long) _

As Long
VB.NET
Public Declare Function LB_GetAddress_SN _
Lib "LB_API2.dll" (_
ByVal sn As String) _
As Integer
Public Declare Function LB_SetAddress_SN _
Lib "LB_API2.dll" (_
ByVal sn As String, _
ByVal addr As Integer) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetAddress_SN(
string sn);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetAddress_SN(
string sn,

int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 57

LB_SetAntiAliasingEnabled (and related commands)
Related Commands:
LB_GetAntiAl iasingEnabled
These commands enable or disable the anti-aliasing feature or allow its state to be checked.
Normally, the sampling rate is 500 kHz. As the baseband signals approach the Nyquist criteria
(realistically about 200 kHz in this case) problems arise. These are addressed using an anti-aliasing
capability that in effect randomizes the samples. This randomization does have some affect on the
rapidity of acquiring the data. As a result, the anti-aliasing algorithm is normally turned off. However,
when measuring signals that have baseband content greater than about 200 kHz, turning on the anti-
aliasing feature is recommended.

Pass Parameters:
Address, feature state (1 = on, 0 = off)

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Setup

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_SetAntiAliasingEnabled(
long addr,
FEATURE_STATE st);
LB_API2 long _stdcall LB_GetAntiAliasingEnabled(
long addr,
FEATURE_STATE* st);
VB 6.0
Public Declare Function LB_SetAntiAliasingEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal st As FEATURE_STATE) _
As Long
Public Declare Function LB_GetAntiAliasingEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef st As FEATURE_STATE) _

As Long

VB.NET
Public Declare Function LB_SetAntiAliasingEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal st As FEATURE_STATE) _
As Integer
Public Declare Function LB_GetAntiAliasingEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef st As FEATURE_STATE) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetAntiAliasingEnabled(
int addr,
FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 58

public static extern int LB_GetAntiAliasingEnabled(
int addr,

ref FEATURE_STATE st);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 59

LB_SetAutoPulseEnabled (and related commands)

Related Commands:
LB_GetAutoPulseEnabled
These commands enable or disable the default or automatic pulse measurement criteria. The default
value is 3 dB below the measured peak value. This means that when this feature is enabled, the pulse
power will be the average of all power greater than 3 dB below peak.
For example, if the peak was measured to be -30 dBm and this feature was enabled, all samples greater
than -33dBm would be included as pulse power. If this criteria is disabled, then the value set using
LB_GetPulseCriteria would be used.
Additional functions that may be of interest are:

 LB_GetPulseCriteria

 LB_SetPulseCriteria

Pass Parameters:
Address, state of the feature (1 = on, 0 = off)

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Pulse Setup

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_SetAutoPulseEnabled(
long addr,
FEATURE_STATE st);
LB_API2 long _stdcall LB_GetAutoPulseEnabled(
long addr,
FEATURE_STATE* st);
VB 6.0
Public Declare Function LB_SetAutoPulseEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal state As FEATURE_STATE) _
As Long
Public Declare Function LB_GetAutoPulseEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef state As FEATURE_STATE) _
As Long
VB.NET
Public Declare Function LB_SetAutoPulseEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal state As FEATURE_STATE) _
As Integer
Public Declare Function LB_GetAutoPulseEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef state As FEATURE_STATE) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetAutoPulseEnabled(
int addr,
FEATURE_STATE state);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 60

[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetAutoPulseEnabled(
int addr,

ref FEATURE_STATE state);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 61

LB_SetAverages (and related commands)

Related Commands:
LB_GetAverages
These commands set or get the number of data buffers that are averaged. The default is set to 75. It
typically takes about 0.3 to 1 ms to collect one buffer of data.

Pass Parameters:
Address, averages (1 to 30000)

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Setup

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_SetAverages(long addr, long value);
LB_API2 long _stdcall LB_GetAverages(long addr, long* averages);
VB 6.0
Public Declare Function LB_GetAverages _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef value As Long) _
As Long
Public Declare Function LB_SetAverages _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal value As Long) _

As Long
VB.NET
Public Declare Function LB_GetAverages _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef value As Integer) _
As Integer
Public Declare Function LB_SetAverages _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal value As Integer) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetAverages(
int addr,
ref int value);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetAverages(
int addr,

int value);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 62

LB_SetCalDueDate (and related commands)

Related Commands:
LB_GetCalDueDate
These commands set or get the calibration due date, which is specified by serial number, not address.
The calibration due date is set at the factory, but can be changed as an instrument is calibrated.

Pass Parameters:
NA

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Service

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_SetCalDueDate(
char* SN,
long lngYear,
long lngMonth,
long lngDay);
LB_API2 long _stdcall LB_GetCalDueDate(
char* SN,
long* year,
long* month,
long* day);
VB 6.0
Public Declare Function LB_SetCalDueDate _
Lib "LB_API2.dll" (_
ByVal sn As String, _
ByVal year As Long, _
ByVal month As Long, _
ByVal day As Long) _
As Long
Public Declare Function LB_GetCalDueDate _
Lib "LB_API2.dll" (_
ByVal sn As String, _
ByRef day As Long, _
ByRef month As Long, _
ByRef day As Long) _

As Long
VB.NET
Public Declare Function LB_SetCalDueDate _
Lib "LB_API2.dll" (_
ByVal sn As String, _
ByVal year As Integer, _
ByVal month As Integer, _
ByVal day As Integer) _
As Integer
Public Declare Function LB_GetCalDueDate _
Lib "LB_API2.dll" (_
ByVal sn As String, _
ByRef day As Integer, _
ByRef month As Integer, _
ByRef day As Integer) _
As Integer

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 63

C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetCalDueDate(
string sn,
int year,
int month,
int day);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetCalDueDate(
string sn,
ref int year,
ref int month,

ref int day);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 64

LB_SetCWReference (and related commands)

Related Commands:
LB_GetCWReference
These commands set up the instrument for relative measurements during CW measurements. (Separate
functions set the reference for pulse measurements.) To make relative measurements, the units of
measure must be set to "dB Relative". For more information, see the functions
LB_SetMeasurementPowerUnits and LB_GetMeasurementPowerUnits. The reference may be changed
during a relative measurement. All relative measurements are made as a ratio and reported as
dB above or below the reference.
Other commands of interest:
LB_SetMeasurementPowerUnits
LB_GetMeasurementPowerUnits

Pass Parameters:
Address, reference level, power units. The units enumeration is shown below:
DBM = 0 ' dBm
DBW = 1 ' dBW
DBKW = 2 ' dBkW
DBUV = 3 ' dBuV
W = 4 ' Watts
V = 5 ' Volts
DBREL = 6 ' dB Relative (INVALID FOR SETTING A REFERENCE)

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Setup

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_SetCWReference(long addr, double relRef, PWR_UNITS units);
LB_API2 long _stdcall LB_GetCWReference(long addr, double* relRef, PWR_UNITS* units);
VB 6.0
Public Declare Function LB_SetCWReference _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal Ref As Double, _
ByVal units As PWR_UNITS) _
As Long
Public Declare Function LB_GetCWReference _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef relRef As Double, _
ByRef units As PWR_UNITS) _
As Long
VB.NET
Public Declare Function LB_SetCWReference _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal Ref As Double, _
ByVal units As PWR_UNITS) _
As Integer
Public Declare Function LB_GetCWReference _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef relRef As Double, _

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 65

ByRef units As PWR_UNITS) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetCWReference(
int addr,
double Ref,
PWR_UNITS units);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetCWReference(
nt addr,
ref double relRef,

ref PWR_UNITS units);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 66

LB_SetDutyCycleEnabled (and related commands)

Related Commands:
LB_GetDutyCycleEnabled
LB_SetDutyCyclePerCent
LB_GetDutyCyclePerCent
These commands set up the instrument for average pulse power measurements based on an assumed
duty cycle value. These commands may be used on the GT-8553B and GT-8554B sensors to measure
average pulse power. This technique is not recommended for the GT-8551B, GT-8552B, and GT-8555B
sensors, even thought the command is compatible with them. Direct average pulse power measurements
are available on GT-8551B, GT-8552B, and GT-8555B sensors, through the LB_MeasurePulse
command.

The calculation to adjust for duty cycle is:
10Log10(Duty Cycle)
Assuming a duty cycle of 10%, the calculation for equivalent average power would be:
10Log10(0.1) = -10 dB
This means the average power of a signal with a 10% duty cycle will be 10 dB below the peak value. For
instruments measuring average power, the power reading is simply adjusted by 10 dB. This adjustment
yields the peak power but it also assumes that the duty cycle is correct.
These commands can enable or disable the duty cycle feature, and set the percent value.
SetDutyCycleEnabled enables or disables the duty cycle adjustment. GetDutyCycleEnabled reads back
the state of this feature (enabled or disabled). SetDutyCyclePerCent sets the value of the duty cycle
without affecting the state of the feature. GetDutyCyclePerCent reads back the value of the duty cycle.

Pass Parameters:
Address, feature state (1 = on, 0 = off) or the value of the duty cycle in percent.

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Setup

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_SetDutyCycleEnabled(
long addr,
FEATURE_STATE st);
LB_API2 long _stdcall LB_GetDutyCycleEnabled(
long addr,
FEATURE_STATE* st);
LB_API2 long _stdcall LB_SetDutyCyclePerCent(
long addr,
double val);
LB_API2 long _stdcall LB_GetDutyCyclePerCent(
long addr,
double* val);
VB 6.0
Public Declare Function LB_SetDutyCycleEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal state As FEATURE_STATE) _
As Long
Public Declare Function LB_GetDutyCycleEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef state As FEATURE_STATE) _

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 67

As Long
Public Declare Function LB_SetDutyCyclePerCent _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal val As Double) _
As Long
Public Declare Function LB_GetDutyCyclePerCent _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef val As Double) _

As Long

VB.NET
Public Declare Function LB_SetDutyCycleEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal state As FEATURE_STATE) _
As Integer
Public Declare Function LB_GetDutyCycleEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef state As FEATURE_STATE) _
As Integer
Public Declare Function LB_SetDutyCyclePerCent _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal val As Double) _
As Integer
Public Declare Function LB_GetDutyCyclePerCent _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef val As Double) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetDutyCycleEnabled(
int addr,
FEATURE_STATE state);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetDutyCycleEnabled(
int addr,
ref FEATURE_STATE state);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetDutyCyclePerCent(
int addr,
double val);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetDutyCyclePerCent(
int addr,

ref double val);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 68

LB_SetExtendedAveraging (and related commands)

Related Commands:
LB_GetExtendedAveraging
LB_SetExtendedAveragingEnabled
LB_GetExtendedAveragingEnabled
LB_ResetExtendedAveraging
These commands manage the extended average settings of the instrument. Regular averaging performs
a series of acquisitions and then delivers a final measurement. Extended averaging “extends” over
multiple measurements. Extended averaging uses a form of exponential averaging that combines the
most recent measurement with previous measurements. Regular averaging and extended averaging may
be used together to achieve good stability and good response time. All averaging is performed on linear
data regardless of the current measurement units. In programmatic measurements, it is important to get
a good measurement as quickly as possible. Using extended averaging allows for long measurement
times, but allows you to stop the measurement when a stable reading has been achieved. The pseudo-
code below shows how that might be achieved:

LB_SetExtendedAveraging(50) ‘sets the number of extended averages to 50
LB_SetAverages (400) ‘sets averaging to about 100 μs
LB_SetExtendedAveragingEnabled(true) ‘enables extended averaging
LB_ResetExtendedAveraging () ‘resets (restarts) extending averaging process
LastMeas = -1000
DeltaMeas = -1000
DeltaMeasLimit = 0.04 ‘last two measurements is less than 0.04 dB

Do
LB_MeasureCW(cw)

DeltaMeas = AbsoluteValue(cw – LastMeas) ‘make a measurment
LastMeas = cw ‘calculate the change

While (DeltaMeas > DeltaMeasLimit) ‘retain the last measurement
FinalResult = LastMeas ‘loop until
LB_ResetExtendedAveraging ()
LB_SetExtendedAveragingEnabled(false)

This routine makes measurements until the result becomes stable with the result returned in the variable
“FinalResult”. Yet it measures for no more than an extra 100μs. In actual use, additional code would have
to be added for error checking and trapping.

Extended averaging remembers the essential elements of recent measurements. Each call to
LB_ResetExtendedAveraging clears all the data held in the buffers and restarts the averaging process.
Each subsequent measurement add more averaging until the number of measurements set by calling
LB_SetExtendedAveraging has been made.

The commands function as follows:

 LB_GetExtendedAveragingEnabled – returns the state of extended averaging.

 LB_SetExtendedAveragingEnabled – enables (st = 1) or disables (st = 0) extended averaging.

 LB_GetExtendedAveraging – returns the number of extended averages.

 LB_SetExtendedAveraging – sets the number of extended averages. The minimum is 1 the
maximum is limited by

 the the type of variable.

 LB_ResetExtendedAveraging – clearly all the buffers related to extended averaging and restarts
the process.

Pass Parameters:

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 69

addr – address of the device
st – indicates the state of extended averaging, 0 = off, 1 = on,
extAvg – number of most recent measurements to include in the average

Returned Values:
Success: >= 1
Failure: < 0

Command Group:
Setup

Sample Code Declarations:
C++
long LB_GetExtendedAveragingEnabled(long addr, enum FEATURE_STATE* st);
long LB_SetExtendedAveragingEnabled(long addr, enum FEATURE_STATE st);
long LB_GetExtendedAveraging(long addr, long* extAvg);
long LB_SetExtendedAveraging(long addr, long extAvg);
long LB_ResetExtendedAveraging(long addr);
VB.NET
Public Declare Function LB_GetExtendedAveragingEnabled Lib "LB_API2.dll" (ByVal addr As Integer,
ByRef
st As FEATURE_STATE) As Integer
Public Declare Function LB_SetExtendedAveragingEnabled Lib "LB_API2.dll" (ByVal addr As Integer,
ByVal
st As FEATURE_STATE) As Integer
Public Declare Function LB_GetExtendedAveraging Lib "LB_API2.dll" (ByVal addr As Integer, ByRef
extAvg
As Integer) As Integer
Public Declare Function LB_SetExtendedAveraging Lib "LB_API2.dll" (ByVal addr As Integer, ByVal
extAvg
As Integer) As Integer
Public Declare Function LB_ResetExtendedAveraging Lib "LB_API2.dll" (ByVal addr As Integer) As
Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
int LB_GetExtendedAveragingEnabled(int addr, ref FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
int LB_SetExtendedAveragingEnabled(int addr, FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
int LB_GetExtendedAveraging(int addr, ref int extAvg);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
int LB_SetExtendedAveraging(int addr, int extAvg);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]

int LB_ResetExtendedAveraging(int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 70

LB_SetFrequency (and related commands)

Related Commands:
LB_GetFrequency
These commands set or get the frequency of the addressed device. Frequency is specified in Hz. It is
important to note the necessity of setting the frequency to get accurate measurements.

Pass Parameters:
addr - frequency in Hz.

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Setup

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_SetFrequency(long addr, double value);
LB_API2 long _stdcall LB_GetFrequency(long addr, double* value);
VB 6.0
Public Declare Function LB_SetFrequency _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal value As Double) _
As Long
Public Declare Function LB_GetFrequency _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef value As Double) _

As Long
VB.NET
Public Declare Function LB_SetFrequency _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal value As Double) _
As Integer
Public Declare Function LB_GetFrequency Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef value As Double) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetFrequency(
int addr,
double value);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetFrequency(
int addr,

ref double value);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 71

LB_SetLimitEnabled (and related commands)

Related Commands:
LB_GetLimitEnabled
LB_SetSingleSidedLimit
LB_GetSingleSidedLimit
LB_SetDoubleSidedLimit
LB_GetDoubleSidedLimit
These commands set and get limits, and specify single-sided limits, double- sided limits, or neither limit.
Limits are fixed values against which a measured value is compared and typically evaluated as pass or
fail. This evaluation
is made and returned during either LB_MeasureCW_PF or LB_MeasurePulse_PF.
There are two types of limits:

 Single line — the value can be below, equal to, or above this line. Any of these conditions can be
specified as pass or fail. Typicallly, the passing condition is specified; failing is implied by not
passing.

 Double line — the value can be equal outside these lines, between the lines, or equal to one of
the lines. Any condition may be specified as pass or fail.

The following is required when specifying a limit:

 Address (instrument to which this applies)

 Type of limit

 Boundary conditions (one for single-sided, two for double-sided)

 Units for the boundary conditions

 The rule of how to evaluate a pass or fail (we specify pass). The rules are different for single and
double-sided limits.

Enabling the units means specifying to enable single-sided limits, double-sided limits, or neither limit.
NOTE. In the declarations section below, some of the comments have been truncated for brevity. Also,
the enumerations
specific to limits are shown, with the exception of units, which are shown in several other areas.

Pass Parameters:
Address, value(s) of the limit(s), units and the rule.
OR
Address, feature state (1 = on, 0 = off)

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Setup

Sample Code Declarations:
C++
enum LIMIT_STYLE
{
LIMITS_OFF = 0,
SINGLE_SIDED = 1,
DOUBLE_SIDED = 2
};
enum SS_RULE
{
PASS_LT = 0,
PASS_LTE = 1,
PASS_GT = 2,
PASS_GTE = 3,
};
enum DS_RULE

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 72

{
PASS_BETWEEN_EXC = 0,
PASS_BETWEEN_INC = 1,
PASS_OUTSIDE_EXC = 2,
PASS_OUTSIDE_INC = 3
enum PASS_FAIL_RESULT
{
PASS = 0,
FAIL_LOW = 1,
FAIL_HIGH = 2,
FAIL_BETWEEN_LIMIT_EXC = 3,
FAIL_BETWEEN_LIMIT_INC = 4,
NO_DETERMINATION = 5
};
// Enumeration of pass/fail limits
// Pass if measured value less than
// Pass if measured value less than or equal
// Pass if measured value greater than
// Pass if measured value greater than or equal
// Pass if value is greater than lower limit AND less than upper limit
// Pass if value is equal to or greater than lower limit AND equal to
// or less than upper limit
// Pass if measured value is less than the lower OR
// greater than the upper limit
// Pass if measured value is equal to or greater than the upper
// limit OR equal to or less than the lower limit
// pass, measured value within limits
// failed, measured value too low
// failed, measured value too high
// failed greater than or equal to lower limit
// failed less than or equal to lower limit
// no determination made, possible reasons include
// the following reasons:
// - limits are not enabled
// - limits are not specified
// - valid measurement not made (timeout?)
LB_API2 long _stdcall
LB_SetLimitEnabled(
long addr,
LIMIT_STYLE lmtStyle);
LB_API2 long _stdcall
LB_SetSingleSidedLimit(
long addr,
double val,
PWR_UNITS units,
SS_RULE passFail);
LB_API2 long _stdcall
LB_SetDoubleSidedLimit(
long addr,
double lowerVal,
double upperVal,
PWR_UNITS units,
DS_RULE passFail);
LB_API2 long _stdcall
LB_GetLimitEnabled(
long addr,

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 73

LIMIT_STYLE* lmtStyle);
LB_API2 long _stdcall
LB_GetSingleSidedLimit(
long addr,
double* val,
PWR_UNITS* units,
SS_RULE* passFail);
LB_API2 long _stdcall
LB_GetDoubleSidedLimit(
long addr,
double* lowerVal,
double* upperVal,
PWR_UNITS* units,
DS_RULE* passFail);

VB 6.0
Public Enum LIMIT_STYLE
LIMITS_OFF = 0
SINGLE_SIDED = 1
DOUBLE_SIDED = 2
End Enum
Public Enum SS_RULE
PASS_LT = 0
PASS_LTE = 1
PASS_GT = 2
PASS_GTE = 3
End Enum
Public Enum DS_RULE
PASS_BETWEEN_EXC = 0
PASS_BETWEEN_INC = 1
PASS_OUTSIDE_EXC = 2
PASS_OUTSIDE_INC = 3
End Enum
Public Enum PASS_FAIL_RESULT
PASS = 0
FAIL_LOW = 1
FAIL_HIGH = 2
FAIL_BETWEEN_LIMIT_EXC = 3
FAIL_BETWEEN_LIMIT_INC = 4
NO_DETERMINATION = 5reasons
End Enum
Public Declare Function
LB_SetLimitEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal lmtStyle As LIMIT_STYLE) _
As Long
' Disable limits
' Use single sided limits in pass/fail evaluation
' Use double sided limits in pass/fail evaluation
' Pass if measured value less than
' Pass if measured value less than or equal
' Pass if measured value greater than
' Pass if measured value greater than or equal
' Pass if measured value is greater than the
' Pass if measured value is equal to or greater

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 74

' Pass if measured value is less than the lower
' Pass if measured value is equal to or greater
' Pass measured value within limits
' Failed measured value too low
' Failed measured value too high
' Failed between limits
' Failed between limits
' No determination made; possible
' reasons include:
' - limits are not enabled
' - limits are not specified
' - valid measurement not made (timeout
LB_SetSingleSidedLimit _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal val As Double, _
ByVal units As PWR_UNITS, _
ByVal passFail As SS_RULE) _
As Long
Public Declare Function
LB_SetDoubleSidedLimit _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal lowerVal As Double, _
ByVal upperVal As Double, _
ByVal units As PWR_UNITS, _
ByVal passFail As DS_RULE) _
As Long
Public Declare Function
LB_GetLimitEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef lmtStyle As LIMIT_STYLE) _
As Long
Public Declare Function
LB_GetSingleSidedLimit _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef val As Double, _
ByRef units As PWR_UNITS, _
ByRef passFail As SS_RULE) _
As Long
Public Declare Function
LB_GetDoubleSidedLimit _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef lowerVal As Double, _
ByRef upperVal As Double, _
ByRef units As PWR_UNITS, _
ByRef passFail As DS_RULE) _

As Long
VB.NET
Public Enum LIMIT_STYLE
LIMITS_OFF = 0
SINGLE_SIDED = 1
DOUBLE_SIDED = 2

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 75

End Enum
Public Enum SS_RULE
PASS_LT = 0
PASS_LTE = 1
PASS_GT = 2
PASS_GTE = 3
End Enum
Public Enum DS_RULE
PASS_BETWEEN_EXC = 0
PASS_BETWEEN_INC = 1
PASS_OUTSIDE_EXC = 2
PASS_OUTSIDE_INC = 3
End Enum
Public Enum PASS_FAIL_RESULT
PASS = 0
FAIL_LOW = 1
FAIL_HIGH = 2
FAIL_BETWEEN_LIMIT_EXC = 3
FAIL_BETWEEN_LIMIT_INC = 4
NO_DETERMINATION = 5 reasons
End Enum
Public Declare Function
LB_SetLimitEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal lmtStyle As LIMIT_STYLE) _
As Integer
Public Declare Function
LB_SetSingleSidedLimit _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal val As Double, _
ByVal units As PWR_UNITS, _
ByVal passFail As SS_RULE) _
As Integer
'disable limits
'use single sided limits in pass/fail evaluation
'use double sided limits in pass/fail evaluation
' Pass if measured value less than
' Pass if measured value less than or equal
' Pass if measured value greater than
' Pass if measured value greater than or equal
' Pass if measured value is greater than the
' Pass if measured value is equal to or greater
' Pass if measured value is less than the lower
' Pass if measured value is equal to or greater
' pass measured value within limits
' failed measured value too low
' failed measured value too high
' failed between limits
' failed between limits
' no determination made; possible
' reasons include:
' - limits are not enabled
' - limits are not specified
' - valid measurement not made (timeout?)

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 76

Public Declare Function
LB_SetDoubleSidedLimit _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal lowerVal As Double, _
ByVal upperVal As Double, _
ByVal units As PWR_UNITS, _
ByVal passFail As DS_RULE) _
As Integer
Public Declare Function
LB_GetLimitEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef lmtStyle As LIMIT_STYLE) _
As Integer
Public Declare Function
LB_GetSingleSidedLimit _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef val As Double, _
ByRef units As PWR_UNITS, _
ByRef passFail As SS_RULE) _
As Integer
Public Declare Function
LB_GetDoubleSidedLimit _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef lowerVal As Double, _
ByRef upperVal As Double, _
ByRef units As PWR_UNITS, _
ByRef passFail As DS_RULE) _
As Integer
C# public enum LIMIT_STYLE
{
LIMITS_OFF = 0,
SINGLE_SIDED = 1,
DOUBLE_SIDED = 2,
}
public enum SS_RULE
PASS_LT = 0,
PASS_LTE = 1,
PASS_GT = 2,
PASS_GTE = 3,
}
public enum DS_RULE
{
PASS_BETWEEN_EXC = 0,
PASS_BETWEEN_INC = 1,
PASS_OUTSIDE_EXC = 2,
PASS_OUTSIDE_INC = 3,

}

{
PASS = 0,
FAIL_LOW = 1,
FAIL_HIGH = 2,

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 77

FAIL_BETWEEN_LIMIT_EXC = 3,
FAIL_BETWEEN_LIMIT_INC = 4,
NO_DETERMINATION = 5,
// not limited to the following reasons:
// - limits are not enabled
// - limits are not specified
// - valid measurement not made
(timeout?)
}
[System.Runtime.InteropServices.DllImport("
LB_API2.dll")]
public static extern int
LB_SetLimitEnabled(
int addr,
LIMIT_STYLE lmtStyle);
[System.Runtime.InteropServices.DllImport("
LB_API2.dll")]
public static extern int
LB_SetSingleSidedLimit(
int addr,
double val,
PWR_UNITS units,
SS_RULE passFail);
[System.Runtime.InteropServices.DllImport("
LB_API2.dll")]
public static extern int
LB_SetDoubleSidedLimit(
int addr,
double lowerVal,
double upperVal,
PWR_UNITS units,
DS_RULE passFail);
[System.Runtime.InteropServices.DllImport("
LB_API2.dll")]
public static extern int
LB_GetLimitEnabled(
int addr,
ref LIMIT_STYLE lmtStyle);
[System.Runtime.InteropServices.DllImport("
LB_API2.dll")]
public static extern int
LB_GetSingleSidedLimit(
int addr,
ref double val,
ref PWR_UNITS units,
ref SS_RULE passFail);
[System.Runtime.InteropServices.DllImport("
LB_API2.dll")]
public static extern int
LB_GetDoubleSidedLimit(
int addr,
ref double lowerVal,
ref double upperVal,
ref PWR_UNITS units,
ref DS_RULE passFail);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 78

LB_SetMaxHoldEnabled (and related commands)

Related Commands:
LB_GetMaxHoldEnabled
LB_ResetMaxHold
These commands cause CW or pulse measurements to retain the greater of the most recent
measurement or previous measurements. Resetting max hold restarts the process of looking for a new
maximum. In CW only the CW or average power measurement is affected by max hold. In pulse
measurements all values (pulse, peak, duty cycle and average) are affected by max hold.
LB_GetMaxHoldEnabled returns the state of the max hold feature. LB_SetMaxHoldEnabled disables (0)
or enables (1) the max hold feature. Finally, LB_ResetMaxHold restarts the search for a maximum.

Pass Parameters:
addr – address of the device
st – indicates the state of extended averaging, 0 = off, 1 = on,

Returned Values:
Success: >=1
Error: <0

Command Group:
Setup

Sample Code Declarations:
C++
long LB_GetMaxHoldEnabled(long addr, enum FEATURE_STATE* st);
long LB_SetMaxHoldEnabled(long addr, enum FEATURE_STATE st);
long LB_ResetMaxHold(long addr);
VB.NET
Public Declare Function LB_GetMaxHoldEnabled Lib "LB_API2.dll"
(ByVal addr As Integer,
ByRef st As FEATURE_STATE) As Integer
Public Declare Function LB_SetMaxHoldEnabled Lib "LB_API2.dll"
(ByVal addr As Integer,
ByVal st As FEATURE_STATE) As Integer
Public Declare Function LB_ResetMaxHold Lib "LB_API2.dll"
(ByVal addr As Integer) As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
int LB_GetMaxHoldEnabled(int addr, ref FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
int LB_SetMaxHoldEnabled(int addr, enum FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
int LB_ResetMaxHold(int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 79

LB_SetMeasurementPowerUnits (and related commands)

Related Commands:
LB_GetMeasurementPowerUnits
These commands set or get the measurement power units. The available units are:
DBM = 0 ' dBm
DBW = 1 ' dBW
DBKW = 20 ' dBkW
DBUV = 3 ' dBuV
W = 4 ' Watts
V = 5 ' Volts
DBREL = 6 ' dB Relative
When the units are set to "DBREL", the measurement is always in dB. When the instrument is measuring
CW, the
CW reference is used. When making pulse measurements, the pulse reference values are used as the
basis for the measurements.
Other commands of interest:
LB_SetCWReference
LB_GetCWReference
LB_SetPulseReference
LB_GetPulseReference

Pass Parameters:
Address, power units. The units enumeration is shown above:

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Setup

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_SetMeasurementPowerUnits(
long addr,
PWR_UNITS units);
LB_API2 long _stdcall LB_GetMeasurementPowerUnits(
long addr,
PWR_UNITS* units);
VB 6.0
Public Declare Function LB_SetMeasurementPowerUnits _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal units As PWR_UNITS) _
As Long
Public Declare Function LB_GetMeasurementPowerUnits _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef units As PWR_UNITS) _
As Long
VB.NET
Public Declare Function LB_SetMeasurementPowerUnits _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal units As PWR_UNITS) _
As Integer
Public Declare Function LB_GetMeasurementPowerUnits _
Lib "LB_API2.dll" (_

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 80

ByVal addr As Integer, _
ByRef units As PWR_UNITS) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetMeasurementPowerUnits(
int addr,
PWR_UNITS units);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetMeasurementPowerUnits(
int addr, ref PWR_UNITS units);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 81

LB_SetOffset (and related commands)

Related Commands:
LB_GetOffset
LB_SetOffsetEnabled
LB_GetOffsetEnabled
These commands cause a fixed offset to be added to the reading, or enable/disable the feature. The
offset is typically used to compensate for losses or gains in the measurement path. This offset is fixed
and is not a function of frequency. For an offset that is a function of frequency, use the response function
calls.

Pass Parameters:
Address, and either the state of the feature (1=on, 0 = off) or the value of the offset.

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Setup

Sample Code Declarations:
C++
LB_API2 long _stdcall LB_SetOffsetEnabled(
long addr,
FEATURE_STATE st);
LB_API2 long _stdcall LB_GetOffsetEnabled(
long addr,
FEATURE_STATE* st);
LB_API2 long _stdcall LB_SetOffset(
long addr,
double val);
LB_API2 long _stdcall LB_GetOffset(
long addr, double* val);
VB 6.0
Public Declare Function LB_SetOffsetEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal state As FEATURE_STATE) _
As Long
Public Declare Function LB_GetOffsetEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef state As FEATURE_STATE) _
As Long
Public Declare Function LB_SetOffset _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal val As Double) _
As Long
Public Declare Function LB_GetOffset _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef val As Double) _

As Long
VB.NET
Public Declare Function LB_SetOffsetEnabled _
Lib "LB_API2.dll" (_

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 82

ByVal addr As Integer, _
ByVal state As FEATURE_STATE) _
As Integer
Public Declare Function LB_GetOffsetEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef state As FEATURE_STATE) _
As Integer
Public Declare Function LB_SetOffset _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal val As Double) _
As Integer
Public Declare Function LB_GetOffset _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef val As Double) _
As Integer
C#
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetOffsetEnabled(
int addr,
FEATURE_STATE state);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetOffsetEnabled(
int addr,
ref FEATURE_STATE state);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetOffset(
int addr,
double val);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetOffset(
int addr, ref double val);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 83

LB_SetPulseCriteria (and related commands)

Related Commands:
LB_GetPulseCri ter ia
These commands set or get the pulse measurement criteria. This value determines what portion of the
pulse will be used to measure pulse power. The default or automatic value is 3 dB below the measured
peak value, or the 50% down points. You can also set the criteria and leave the automatic feature on.
Then, by turning the auto feature on and off, you can switch between the automatic value (dB) and the
desired value . For instance, if the criteria is set to 6dB and the auto criteria is turned on and off, you can
toggle between 3 and 6 dB below peak. This can also provide some sense of rise time or slope, and the
sensitivity to this criteria.

NOTE. Pulse criteria is assumed to be specifed as "dB below peak." Normally the specified value will be
positive. For instance, if the peak value is -30dBm and the criteria is 3dB, then the pulse criteria will be -
33dB during the measurement. Likewise, if 6dB is chosen, then the pulse criteria will be -36dB. As long
as the overshoot is minimal and rise time is relatively steep, the automatic criteria shown above is
adequate for most applications

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 84

The figures below are intended to help clarify pulse criteria.

In figure 2, the peak value is -30dBm and the pulse criteria is 3dB. The shaded area represents the
portion of the pulse that will be used to determine pulse power and duty cycle.

In Figure 3, the peak value remains -30dBm. The darkly shaded area represents the portion of the pulse
that will be

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 85

used to determine pulse power and duty cycle using a 6 dB peak criteria. Note that the average in Figure
3 will be lower than the average in Figure 2.

Pass Parameters:
Address, value of the peak criteria in dB below peak

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Pulse Setup

Sample Code Declarations:
C++ LB_API2 long _stdcall LB_SetPulseCriteria(long addr, double val);
LB_API2 long _stdcall LB_GetPulseCriteria(long addr, double* val);
VB 6.0 Public Declare Function LB_SetPulseCriteria _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal val As Double) _
As Long
Public Declare Function LB_GetPulseCriteria _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef val As Double) _
As Long

VB.NET Public Declare Function LB_SetPulseCriteria _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal val As Double) _
As Integer
Public Declare Function LB_GetPulseCriteria _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef val As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetPulseCriteria(
int addr,
double val);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetPulseCriteria(
int addr,
ref double val);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 86

LB_SetPulseReference (and related commands)

Related Commands:
LB_GetPulseReference
These commands configure the instrument for relative measurements during pulse measurements. (Other
commands set a reference for CW measurements.) When making relative measurements, the units of
measure must be set to "dB Relative".

For more information, see the commands LB_SetMeasurementPowerUnits and
LB_GetMeasurementPowerUnits. The reference may be changed during a relative measurement. All
relative measurements are made as a ratio and reported as dB above or below the reference.

Other commands of interest:

 LB_SetMeasurementPowerUnits

 LB_GetMeasurementPowerUnits

Pass Parameters:
Address, reference level, power units. The units enumeration is shown below:
DBM = 0 ' dBm
DBW = 1 ' dBW
DBKW = 2 ' dBkW
DBUV = 3 ' dBuV
W = 4 ' Watts
V = 5 ' Volts
DBREL = 6 ' dB Relative INVALID FOR SETTING A REFERENCE

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Pulse Setup

Sample Code Declarations:
C++ LB_API2 long _stdcall LB_SetPulseReference(long addr,
double pulseRef,
double peakRef,
double averageRef,
double dutyCycleRef,
PWR_UNITS units);
LB_API2 long _stdcall LB_GetPulseReference(long addr,
double* pulseRef,
double* peakRef,
double* averageRef,
double* dutyCycleRef,
PWR_UNITS* units);

VB 6.0 Public Declare Function LB_SetPulseReference _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal pulseRef As Double, _
ByVal peakRef As Double, _
ByVal averageRef As Double, _
ByVal dutyCycleRef As Double, _
ByVal units As PWR_UNITS) _
As Long
Public Declare Function LB_GetPulseReference _
Lib "LB_API2.dll" (_

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 87

ByVal addr As Long, _
ByRef pulseRef As Double, _
ByRef peakRef As Double, _
ByRef averageRef As Double, _
ByRef dutyCycleRef As Double, _
ByRef units As PWR_UNITS) _
As Long

VB.NET Public Declare Function LB_SetPulseReference _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal pulseRef As Double, _
ByVal peakRef As Double, _
ByVal averageRef As Double, _
ByVal dutyCycleRef As Double, _
ByVal units As PWR_UNITS) _
As Integer
Public Declare Function LB_GetPulseReference _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef pulseRef As Double, _
ByRef peakRef As Double, _
ByRef averageRef As Double, _
ByRef dutyCycleRef As Double, _
ByRef units As PWR_UNITS) _
As Integer

C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetPulseReference(
int addr,
double pulseRef,
double peakRef,
double averageRef,
double dutyCycleRef,
PWR_UNITS units);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetPulseReference(
int addr,
ref double pulseRef,
ref double peakRef,
ref double averageRef,
ref double dutyCycleRef,
ref PWR_UNITS units);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 88

LB_SetResponseEnabled (and related commands)

Related Commands:
LB_GetResponseEnabled
LB_SetResponse
LB_GetResponse
These commands set the response, and enable/disable the feature.

Response is a frequency sensitive offset; as the measurement frequency is changed, the response
changes accordingly. Response amplitude is always expressed in dB and the frequency is expressed in
Hz. The interpolation is linear with
respect to frequency and dB.

The response allows up to 201 points to be entered. The response points are frequency and amplitude
pairs. Each set of function calls below are accompanied by the definition of the points. When the points
are passed, the number of points must be specified as well. Setting the response is independent of
enabling or disabling the feature.

Pass Parameters:
Address, array of response structures, number of response structures (1 to 201)
OR
Address, feature state (1 = on, 0 = off)

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Setup

Sample Code Declarations:
C++ struct ResponsePoints
{
double frequency;
double amplitude;
};
LB_API2 long _stdcall LB_SetResponseEnabled(
long addr,
FEATURE_STATE st);
LB_API2 long _stdcall LB_SetResponse(
long addr,
ResponsePoints* pts,
long NumPts);
LB_API2 long _stdcall LB_GetResponseEnabled(
long addr,
FEATURE_STATE* st);
LB_API2 long _stdcall LB_GetResponse(
long addr,
ResponsePoints* pts,
long* NumPts);

VB 6.0 Public Type ResponsePoints
Frequency As Double
Amplitude As Double
End Type
Public Declare Function LB_SetResponse _
Lib "LB_API2.dll" (_
ByVal addr As Long, _

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 89

ByRef pts As ResponsePoints, _
ByVal numPts As Long) _
As Long
Public Declare Function LB_GetResponse _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef pts As ResponsePoints, _
ByRef numPts As Long) _
As Long
Public Declare Function LB_SetResponseEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal st As FEATURE_STATE) _
As Long
Public Declare Function LB_GetResponseEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef st As FEATURE_STATE) _
As Long

VB.NET Public Structure ResponsePoints
Dim Frequency As Double
Dim Amplitude As Double
End Structure
Public Declare Function LB_SetResponse _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef pts As ResponsePoints, _
ByVal numPts As Integer) _
As Integer
Public Declare Function LB_GetResponse _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef pts As ResponsePoints, _
ByRef numPts As Integer) _
As Integer
Public Declare Function LB_SetResponseEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal st As FEATURE_STATE) _
As Integer
Public Declare Function LB_GetResponseEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef st As FEATURE_STATE) _
As Integer

C# public struct ResponsePoints
{
public double Frequency;
public double Amplitude;
}
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetResponse(
int addr,
ref ResponsePoints pts,

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 90

int numPts);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetResponse(
int addr,
ref ResponsePoints pts,
ref int numPts);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetResponseEnabled(
int addr,
FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetResponseEnabled(
int addr,
ref FEATURE_STATE st);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 91

LB_SetTTLTriggerInEnabled (and related commands)

Related Commands:
LB_GetTTLTriggerInEnabled
LB_SetTTLTriggerInInverted
LB_GetTTLTriggerInInverted
LB_SetTTLTriggerInTimeOut
LB_GetTTLTriggerInTimeOut
These commands control or read back the state of the external trigger input. The trigger-in features are
available on instruments with the option present. The trigger is assumed to be TTL compatible, and
positive edge triggered. The trigger-in can be enabled, disabled or inverted; or the timeout value can be
set or read.

The trigger-in defines or controls the start of a measurement cycle. After the trigger is detected, the
measurement will commence and will continue for the specified number of averages. Once a
measurement is requested (LB_MeasureCW, LB_MeasurePulse, etc.) the system will monitor the trigger-
in port. If a trigger is not detected in the allotted time, the system will time out and return an invalid
measurement. The time out of the trigger is set using SetTTLTriggerInTimeOut and specified in
milliseconds.

As stated previously, the trigger may be inverted. When the trigger-in is inverted, the system will look for a
negative edge (instead of a positive edge) and begin the measurement when a negative edge is detected.

Other commands of interest:

 LB_MeasureCW

 LB_MeasureCW_PF

 LB_MeasurePulse

 LB_MeasurePulse_PF

Pass Parameters:
None

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Trigger

Sample Code Declarations:
C++ LB_API2 long _stdcall LB_SetTTLTriggerInEnabled(
long addr,
FEATURE_STATE st);
LB_API2 long _stdcall LB_SetTTLTriggerInInverted(
long addr,
FEATURE_STATE st);
LB_API2 long _stdcall LB_SetTTLTriggerInTimeOut(
long addr,
long val);
LB_API2 long _stdcall LB_GetTTLTriggerInEnabled(
long addr,
FEATURE_STATE* st);
LB_API2 long _stdcall LB_GetTTLTriggerInTimeOut(
long addr,
long val);
LB_API2 long _stdcall LB_GetTTLTriggerInInverted(

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 92

long addr,
FEATURE_STATE* st);

VB 6.0 Public Declare Function LB_SetTTLTriggerInEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal st As FEATURE_STATE) _
As Long
Public Declare Function LB_SetTTLTriggerInInverted _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal st As FEATURE_STATE) _
As Long
Public Declare Function LB_SetTTLTriggerInTimeOut _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal timeOut As Long) _
As Long
Public Declare Function LB_GetTTLTriggerInEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef st As FEATURE_STATE) _
As Long
Public Declare Function LB_GetTTLTriggerInInverted _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef st As FEATURE_STATE) _
As Long
Public Declare Function LB_GetTTLTriggerInTimeOut _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef timeOut As Long) _
As Long

VB.NET Public Declare Function LB_SetTTLTriggerInEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal st As FEATURE_STATE) _
As Integer
Public Declare Function LB_SetTTLTriggerInInverted _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal st As FEATURE_STATE) _
As Integer
Public Declare Function LB_SetTTLTriggerInTimeOut _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal timeOut As Integer) _
As Integer
Public Declare Function LB_GetTTLTriggerInEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef st As FEATURE_STATE) _
As Integer
Public Declare Function LB_GetTTLTriggerInInverted _
Lib "LB_API2.dll" (_

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 93

ByVal addr As Integer, _
ByRef st As FEATURE_STATE) _
As Integer
Public Declare Function LB_GetTTLTriggerInTimeOut _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef timeOut As Integer) _
As Integer

C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetTTLTriggerInEnabled(
int addr,
FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetTTLTriggerInInverted(
int addr,
FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetTTLTriggerInTimeOut(
int addr,
int timeOut);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetTTLTriggerInEnabled(
int addr,
ref FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetTTLTriggerInInverted(
int addr,
ref FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetTTLTriggerInTimeOut(
int addr,
ref int timeOut);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 94

LB_SetTTLTriggerOutEnabled (and related commands)

Related Commands:
LB_GetTTLTriggerOutEnabled
LB_SetTTLTriggerOutInverted
LB_GetTTLTriggerOutInverted
These features apply only to those instruments that have the trigger option.
These commands control the trigger output of the device. The trigger-out is compatible with TTL levels. It
can be enabled, disabled, inverted or normal. The trigger-out occurs at the beginning of a measurement.

This means that if the measurement is untriggered (i.e. trigger-in is disabled) and trigger-out is enabled, a
trigger will be produced each time a measurement is made. If the trigger-in is enabled, the trigger will be
passed through when it is received.

A trigger output is normally low. When a trigger is produced, it begins with a positive-going edge and
stays at a TTL level for a few microseconds, then returns to ground potential. If the trigger-out is inverted,
it will transition from a high to a low TTL level. When a trigger is produced, a negative edge will be
produced going to a TTL low. After a few microseconds, it will return to a TTL high.

Pass Parameters:
Address, feature state (1 = on, 0 = off)

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Trigger

Sample Code Declarations:
C++ LB_API2 long _stdcall LB_GetTTLTriggerOutEnabled(
long addr,
FEATURE_STATE* st);
LB_API2 long _stdcall LB_SetTTLTriggerOutEnabled(
long addr,
FEATURE_STATE st);
LB_API2 long _stdcall LB_SetTTLTriggerOutInverted(
long addr,
FEATURE_STATE st);
LB_API2 long _stdcall LB_GetTTLTriggerOutInverted(
long addr,
FEATURE_STATE* st);

VB 6.0 Public Declare Function LB_SetTTLTriggerOutEnabled _
Lib "LB_API2.dll" (_ ByVal addr As Long, _
ByVal st As FEATURE_STATE) _
As Long
Public Declare Function LB_SetTTLTriggerOutInverted _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal st As FEATURE_STATE) _
As Long
Public Declare Function LB_GetTTLTriggerOutEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef st As FEATURE_STATE) _

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 95

As Long
Public Declare Function LB_GetTTLTriggerOutInverted _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByRef st As FEATURE_STATE) _
As Long

VB.NET Public Declare Function LB_SetTTLTriggerOutEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal st As FEATURE_STATE) _
As Integer
Public Declare Function LB_SetTTLTriggerOutInverted _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal st As FEATURE_STATE) _
As Integer
Public Declare Function LB_GetTTLTriggerOutEnabled _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef st As FEATURE_STATE) _
As Integer
Public Declare Function LB_GetTTLTriggerOutInverted _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByRef st As FEATURE_STATE) _
As Integer

C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetTTLTriggerOutEnabled(
int addr,
FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_SetTTLTriggerOutInverted(
int addr,
FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetTTLTriggerOutEnabled(
int addr,
ref FEATURE_STATE st);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_GetTTLTriggerOutInverted(
int addr,
ref FEATURE_STATE st);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 96

LB_StoreReg (and related commands)

Related Commands:
LB_Recal lReg
These commands are the traditional store/recall register commands. There are 20 registers and each
register holds an entire state. Unlike most instruments, however, the states are NOT held in the
instrument, but are stored on the local PC in an *.INI file (basic text file). The files are named by model
number and address, and are retained on the local host computer. This means that saved states can be
saved, copied or moved between PCs. Any instrument that is initialized with that
address will use the states with a properly named *.INI file. The naming convention of the file is as
follows, where xxx is the address of the unit:
GT-8888A_xxx.ini
GT-8551A_xxx.ini
GT-8552A_xxx.ini
GT-8553A_xxx.ini
GT-8554A_xxx.ini
GT-8555A_xxx.ini
GT-8551B_xxx.ini
GT-8552B_xxx.ini
GT-8553B_xxx.ini
GT-8554B_xxx.ini
GT-8555B_xxx.ini

More importantly, the names of the files may be renamed and managed by the user application (perhaps
stored in a data base as a long string); the store/recall registers are now under user control.

Pass Parameters:
None

Returned Values:
Success: > 0
Error: <= 0

Command Group:
Save/Recall

Sample Code Declarations:
C++ LB_API2 long _stdcall LB_Store(
long addr,
long regIdx);
LB_API2 long _stdcall LB_Recall(
long addr,
long regIdx);

VB 6.0 Public Declare Function LB_Store _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal regIdx As Long) _
As Long
Public Declare Function LB_Recall _
Lib "LB_API2.dll" (_
ByVal addr As Long, _
ByVal regIdx As Long) _
As Long

VB.NET Public Declare Function LB_Store _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 97

ByVal regIdx As Integer) _
As Integer
Public Declare Function LB_Recall _
Lib "LB_API2.dll" (_
ByVal addr As Integer, _
ByVal regIdx As Integer) _
As Integer

C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_Store(
int addr,
int regIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_Recall(
int addr,
int regIdx);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 98

LB_WillAddressConflict
This command checks the address of all instruments connected to the system. If any of the addresses
match, a conflict is deemed to exist. If all the addresses are unique to the system, a conflict is deemed
not to exist.

Pass Parameters:
None

Returned Values:
Conflict Exists = 1
Conflict does not exit = 0
Error < 0

Command Group:
Initialization and Identification

Sample Code Declarations:
C++ LB_API2 long _stdcall LB_WillAddressConflict(long addr);
VB 6.0 Public Declare Function LB_WillAddressConflict _
Lib "LB_API2.dll" (_
ByVal addr As Long) _
As Long
VB.NET Public Declare Function LB_WillAddressConflict _
Lib "LB_API2.dll" (_
ByVal addr As Integer) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int LB_WillAddressConflict(int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 99

PP_AnalysisTraceIsValid
This command checks to ensure that the current analysis trace is valid. If the analysis trace is valid, a 1 is
returned; if it is not valid, a 0 or less is returned. Note that all measurements, gates and marker
commands operate on the analysis trace. An analysis trace is most commonly obtained by calling
PP_CurrTrace2AnalysisTrace after having taken a trace (see PP_GetTrace).

Pass Parameters:
addr – address of the selected instrument

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Status

Sample Code Declarations:
C++ long __stdcall PP_AnalysisTraceIsValid(long addr);
VB NET Public Declare Function PP_AnalysisTraceIsValid Lib "LB_API2.dll" _
(ByRef addr As Integer) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_AnalysisTraceIsValid(int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 100

PP_CheckTrigger
This command checks the trigger source for an active trigger. If a trigger is detected, a value > 0 is
returned; if a trigger is not detected, a value <= 0 is returned.

Pass Parameters:
addr – address of the selected instrument

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Status

Sample Code Declarations:
C++ long __stdcall PP_CheckTrigger(long addr);
VB.NET Public Declare Function PP_CheckTrigger Lib "LB_API2.dll" _
(ByVal addr As Integer) As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_CheckTrigger(long addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 101

PP_CnvtTrace
This command converts a trace (trIn) from one unit to another, and stores the converted values in a new
trace (trOut). The power unit values units are shown below in the enumeration. The valid values are 0..7
(dBm…V) . Note that units may not be DBREL (dB relative) or a value of 8.
enum PWR_UNITS
{
DBM = 0, // dBm
DBW = 1, // dBW
DBKW = 2, // dBkW
DBUV = 3, // dBuV
DBMV = 4, // dBmV
DBV = 5, // dBV
W = 6, // Watts
V = 7, // Volts
DBREL = 8 // dB Relative
}

Pass Parameters:
addr – address of the selected instrument
*trIn – a pointer to an array of doubles (user must allocate the array) that will be converted. This is the
source data.
trLen – a 32 bit integer indicating the length of the array
*trOut - a pointer to an array of doubles (user must allocate the array) that will contain the converted data.
This is
the destination data.
pwrUnitsIn – power units of the source data
pwrUnitsOut – power units of the destination data

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Trace

Sample Code Declarations:
C++ long __stdcall PP_CnvtTrace(long addr, double* trIn, long trLen, double* trOut, long
pwrUnitsIn, long pwrUnitsOut);
VB.NET Public Declare Function PP_CnvtTrace Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef trIn As Double, _
ByVal trLen As Integer, _
ByRef trOut As Double, _
ByVal pwrUnitsIn As PWR_UNITS, _
ByVal pwrUnitsOut As PWR_UNITS) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_CnvtTrace
(int addr,
ref double trIn,
int trLen,
ref double trOut,
int pwrUnitsIn,
int pwrUnitsOut);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 102

PP_CurrTrace2AnalysisTrace
This command copies the current trace to the analysis trace and returns a copy of that trace.
The driver potentially holds 2 traces for each initialized instrument. One trace is the current trace; the
second is the analysis trace. The current trace is the most recently taken trace. The analysis trace is the
trace data used to make measurements.

Pass Parameters:
addr – address of the selected instrument
*tr – pointer to an array of doubles
trLen – the length of the trace

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Trace

Sample Code Declarations:
C++ long __stdcall PP_CurrTrace2AnalysisTrace(long addr, double*tr, long trLen);
VB.NET Public Declare Function PP_CurrTrace2AnalysisTrace Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef tr As Double, _
ByVal trLen As Integer) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_CurrTrace2AnalysisTrace
(int addr,
ref double tr,
int trLen);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 103

PP_GatePositionIsValid
This command determines whether the specified gate is valid. The gate index may be 0..4.
For the gate to be valid, the following conditions must exist:

 A valid analysis trace must exist.

 The gate state must be on.

 The left and right sides of the gate must be positioned within the boundaries of the current
analysis trace.

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the gate
*valid – pointer to a 32 bit integer, if the return value > 0 then the gate position is valid. If valid is <= 0 the
gate position
is not valid.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

Sample Code Declarations:
C++ long __stdcall PP_GatePositionIsValid(long addr, long gateIdx, long* valid);
VB.NET Public Declare Function PP_GatePositionIsValid Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef valid As Integer)
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GatePositionIsValid
(int addr,
int gateIdx,
ref int valid);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 104

PP_GetAnalysisTraceLength
This command returns a 32 bit integer indicating the length of the analysis trace. The minimum timeout is
10,000 μs or 10 ms. The maximum timeout is 11 seconds or 11,000,000 μs.

Pass Parameters:
addr is a 32 bit integer containing the address of the device for which the length of the analysis trace is
desired

Returned Values:
A return value of greater than zero indicates success and the length of the analysis trace. The analysis
trace can vary from
480 to 10000 points depending on sweep time. A return value less than 0 indicates failure.

Command Group:
Pulse Profiling Trace

Sample Code Declarations:
C++ Long PP_GetAnalysisTraceLength(long addr);
VB.NET Public Declare Function GetAnalysisTraceLength Lib "LB_API2.dll" (ByVal addr As Integer) As
Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetAnalysisTraceLength(int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 105

PP_GetGateCrestFactor
This command returns the create factor (in dB) of the span in the analysis trace specified by the gate.

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the selected gate, gate mode must be on (see PP_GetGateMode) and the position of
the gate edges
must be valid (see PP_GatePositionIsValid)
*crFactor – returns the crest factor in dB (peak power – average power) between the gate edges

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

Sample Code Declarations:
C++ long __stdcall PP_GetGateCrestFactor(long addr, long gateIdx, double* crFactor);
VB.NET Public Declare Function PP_GetGateCrestFactor Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef crFactor As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGateCrestFactor
(int addr,
int gateIdx,
ref double crFactor);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 106

PP_GetGateDroop
This command returns the droop of the span in the analysis trace specified by the gate. The droop will be
the difference in power between the area at beginning and end of the gate edges.

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the selected gate, gate mode must be on (see PP_GetGateMode) and the position of
the gate edges
must be valid (see PP_GatePositionIsValid)
*droop – returns droop of the signal in dB. This assumes that the gate edges are appropriately positioned
(near the
beginning and end edges of a pulse). It returns the difference between the first 5% and the last 5% of the
area defined
by the gate.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

Sample Code Declarations:
C++ long __stdcall PP_GetGateDroop(long addr, long gateIdx, double* droop);
VB.NET Public Declare Function PP_GetGateDroop Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef droop As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGateDroop
(int addr,
int gateIdx,
ref double droop);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 107

PP_GetGateDutyCycle
This command returns the duty cycle (as a decimal) of span in the analysis trace specified by the gate.

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the selected gate. The gate mode must be on (see PP_GetGateMode) and the position
of the gate edges must be valid (see PP_GatePositionIsValid)
*dutyCycle – returns the ratio of on time to off time. The gate edges may contain many pulses. However,
it must contain at least one full pulse (including the rising edge) followed by the rising edge of the a
second pulse. If the gate contains multiple pulses, the first full cycle will be used to make the
measurement. The value returned is a decimal value. Multiply by 100 to convert to percent.
The diagram below depicts the minimum span defined by the gate edges for a proper duty cycle
measurement. The gate edges are shown in red.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

Sample Code Declarations:
C++ long __stdcall PP_GetGateDutyCycle(long addr, long gateIdx, double* dutyCycle);
VB.NET Public Declare Function PP_GetGateDroop Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef droop As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGateDutyCycle
(int addr,
int gateIdx,
ref double dutyCycle);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 108

PP_GetGateEndPosition
This command returns the location, as an index in the analysis trace, of the right side of the specified
gate.

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the selected gate, gate mode must be on (see PP_GetGateMode) and the position of
the gate edges
must be valid (see PP_GatePositionIsValid)
*trIdx – returns the trace index (assuming a zero based array) of the right or ending side of the gate. The
trace referred to
here is a trace the analysis trace. trace (see PP_CurrTrace2AnalysisTrace).

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

Sample Code Declarations:
C++ long __stdcall PP_GetGateEndPosition(long addr, long gateIdx, long* trIdx);
VB.NET Public Declare Function PP_GetGateEndPosition Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef trIdx As Integer) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGateEndPosition
(int addr,
int gateIdx,
ref int trIdx);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 109

PP_GetGateFallTime
This command returns the fall time in microseconds of the pulse delineated by the selected gate. The
gate must be properly positioned to return a proper value. The left side of the gate must be positioned
between a pulse rising and falling edge. The right side must be positioned after the next falling edge.

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the selected gate, gate mode must be on (see PP_GetGateMode) and the position of
the gate edges must be valid (see PP_GatePositionIsValid)
*gateTm – returns the position in microseconds of the right or ending side of the gate referenced to the
beginning of the trace.. The trace referred to is the analysis trace. The diagram below depicts the
minimum span of the analysis trace that must be defined by the gate. The gate edges are shown in red.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

Sample Code Declarations:
C++ long __stdcall PP_GetGatePRF(long addr, long gateIdx, double* PRFreq);
VB.NET Public Declare Function PP_GetGatePRF Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef PRFreq As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGatePRF
(int addr,
int gateIdx,
ref double PRFreq);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 110

PP_GetGateOverShoot
This command returns the overshoot in dB. Overshoot is calculated using the following process:
Span defined by the gate (gateIdx) is broken into two regions:

 First quarter

 Last three quarters

 Find the peak in first quarter of the span

 Find the average of last three quarters of the span

 Return the difference between the peak in the first and the average of the last three quarters

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the selected gate
*overShoot –overshoot in dB as outlined above

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

Sample Code Declarations:
C++ long __stdcall PP_GetGateOverShoot(long addr, long gateIdx, double* overShoot);
VB.NET Public Declare Function PP_GetGateOverShoot Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef overShoot As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGateOverShoot
(int addr,
int gateIdx,
ref double overShoot);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 111

PP_GetGatePeakPower
This command returns the peak power measured of the analysis trace as defined by the gate edges.

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the selected gate
*pkPwr – returns the peak power in dB. The gate must be on and have a valid position in the analysis
trace. The edges of the gate need not contain a pulse.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

Sample Code Declarations:
C++ long __stdcall PP_GetGatePeakPower(long addr, long gateIdx, double* pkPwr);
VB.NET Public Declare Function PP_GetGatePeakPower Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef pkPwr As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGatePeakPower
(int addr,
int gateIdx,
ref double pkPwr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 112

PP_GetGatePRF
This command returns the pulse repetition frequency (PRF) in Hertz, as defined by the inverse of the time
between the rising edges of the first two complete pulses present in the span defined by the gate
(gateIdx). A complete pulse is a rising edge followed by falling edge. If two complete pulses are not
present in the span defined by the gate, an error (<0 is returned).

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the selected gate
*PRFreg – returns the frequency in Hertz. The span defined by the gate must contain at least one
complete pulse followed by the rising edge of the next pulse. The PRF is measured from rising edge to
rising edge. The diagram below depicts the minimum acceptable span defined by the edges of the gate.
The gate must be on and the analysis trace must be valid. Gate edges are shown in red. It is acceptable
for the gate to contain many pulses. However, the first two rising edges will be used to make the
measurement.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

C++ long __stdcall PP_GetGatePRF(long addr, long gateIdx, double* PRFreq);
VB.NET Public Declare Function PP_GetGatePRF Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef PRFreq As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGatePRF
(int addr,
int gateIdx,
ref double PRFreq);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 113

PP_GetGatePRT
This command returns the pulse repetition time (PRT) in microseconds using the same algorithm defined
for PRF. The sole difference is that time instead of frequency is returned.

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the selected gate
*PRTime – returns the time in microseconds. The span defined by the gate must contain at least one
complete pulse followed by the rising edge of the next pulse. The PRT is measured from rising edge to
rising edge. The diagram below depicts the minimum acceptable span defined by the edges of the gate.
The gate must be on and the analysis trace must be valid. Gate edges are shown in red. It is acceptable
for the gate to contain many pulses. However, the first two rising edges will be used to make the
measurement.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

Sample Code Declarations:
C++ long __stdcall PP_GetGatePRT(long addr, long gateIdx, double* PRTime);
VB.NET Public Declare Function PP_GetGatePRT Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef PRTime As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGatePRT
(int addr,
int gateIdx,
ref double PRTime);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 114

PP_GetGatePulsePower
This command returns average pulse power.

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the selected gate
*plsPwr – returns pulse power in dBm. The span defined by the gate must contain at least one complete
pulse. Specifically it must include a rising edge followed by a falling edge. The average pulse power is
measured by averaging all of the sample between the rising edge to the subsequent falling edge. The
diagram below depicts the minimum acceptable span defined by the edges of the gate. The gate must be
on and the analysis trace must be valid. Gate edges are shown in red. It is acceptable for the gate to
contain many pulses. However, the first complete pulse will be used to make the measurement

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

Sample Code Declarations:
C++ long __stdcall PP_GetGatePulsePower(long addr, long gateIdx, double* plsPwr);
VB.NET Public Declare Function PP_GetGatePulsePower Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef plsPwr As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGatePulsePower
(int addr,
int gateIdx,
ref double plsPwr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 115

PP_GetGatePulseWidth
This command measures the pulse width in microseconds.

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the selected gate
*plsWidth – returns pulse width in microseconds. The span defined by the gate must contain at least one
complete pulse. Specifically it must include a rising edge followed by a falling edge. The pulse width is
measured from rising edge to the subsequent falling edge. The diagram below depicts the minimum
acceptable span defined by the edges of the gate. The gate must be on and the analysis trace must be
valid. Gate edges are shown in red. It is acceptable for the gate to contain many pulses. However, the
first complete pulse will be used to make the measurement

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

Sample Code Declarations:
C++ long __stdcall PP_GetGatePulseWidth(long addr, long gateIdx, double* plsWidth);
VB.NET Public Declare Function PP_GetGatePulseWidth Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef plsWidth As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGatePulseWidth
(int addr,
int gateIdx,
ref double plsWidth);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 116

PP_GetGateRiseTime
This command returns rise time in microseconds.

Pass Parameters:
addr – address of the selected instrument *riseTm – Measured rise time in microseconds. The gate edges
must be set as shown below.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

Sample Code Declarations:
C++ long __stdcall PP_GetGateRiseTime(long addr, long gateIdx, double* riseTm);
VB NET Public Declare Function PP_GetGateRiseTime Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef riseTm As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGateRiseTime
(int addr,
int gateIdx,
ref double riseTm);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 117

PP_GetMarkerAmp
This command returns the amplitude of the trace at the point indicated by the marker.

Pass Parameters:
addr – address of the selected instrument
mrkIdx – index of marker (0..4)
*mkrAmp – amplitude (in dBm) of the position indicated by the marker.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Marker

Sample Code Declarations:
C++ long __stdcall PP_GetMarkerAmp(long addr, long mrkIdx, double* mkrAmp);
VB.NET Public Declare Function PP_GetMarkerAmp Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer, _
ByRef mkrAmp As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetMarkerAmp
(int addr,
int mrkIdx,
ref double mkrAmp);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 118

PP_GetMarkerDeltaAmp
This command returns the difference in amplitude between the normal marker and the delta marker in
dBm.

Pass Parameters:
addr – address of the selected instrument

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Marker

Sample Code Declarations:
C++ long __stdcall PP_GetMarkerDeltaAmp(long addr, long mrkIdx, double* deltaMkrAmp);
VB.NET Public Declare Function PP_GetMarkerDeltaAmp Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer, _
ByRef deltaMkrAmp As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetMarkerDeltaAmp
(int addr,
int mrkIdx,
ref double deltaMkrAmp);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 119

PP_GetPeaks_Val (and related commands)

Related Commands:
PP_GetPeaks_Idx
PP_GetPeaksFromTr_Val
PP_GetPeaksFromTr_Idx
PP_GetPeaks_VEE_Idx
PP_GetPeaks_VEE_Val
These commands return a set of peaks from either the analysis trace (PP_GetPeaks_Val and
PP_GetPeaks_Idx) or from a trace passed to the command. The more complex commands have the
added advantage that the trace may be any compatible trace, and can use a peak criteria and threshold
different from the values currently set. The peaks returned are ordered by index (left to right in the trace)
or by value (highest to lowest). In all cases, the user must allocate an array sufficiently large to hold the
largest number of peaks. A safe array size is half the length of the trace (see the PP_SetSweepTime).
This is safe because a rise and fall is required to identify a peak. This means that a minimum of two
points or pixels is required for each peak. The _VEE calls are designed to be used in the VEE
programming environment which does not allow for arrays of structures. Instead of an array of Peak
structures, the _VEE calls pass an array of longs and doubles.

Pass Parameters:
addr – address of the selected instrument
peak – an array of peaks (see the structure definition)
maxPks – number of peaks allocated (indicates the size of the peaks array allocated by the user)
pksUsed – number of peaks found or used by the peaks command.
peakCrit – peak criteria used to define a peak.
measThresh – measurement threshold use d to filter peaks.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Trace

Sample Code Declarations:
C++
struct Peak
{
long trIdx;
double value;
};
long __stdcall PP_GetPeaks_Val(long addr, Peak* peaks, long maxPks,long* pksUsed);
long __stdcall PP_GetPeaks_Idx(long addr,Peak* peaks,long maxPks,long* pksUsed);
long __stdcall PP_GetPeaks_VEE_Idx(long addr,
long* pkIndicies,
double* pkValues,
long maxPks,
long* pksUsed);
long __stdcall PP_GetPeaks_VEE_Val(long addr,
long* pkIndicies,
double* pkValues,
long maxPks,
long* pksUsed);
long __stdcall PP_GetPeaksFromTr_Val(double* tr,
long trLen,
long units,
double peakCrit,

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 120

double measThresh,
Peak* peaks,
long maxPks,
long* pksUsed);
long __stdcall PP_GetPeaksFromTr_Idx(double* tr,
long trLen,
long units,
double peakCrit,
double measThresh,
Peak* peaks,
long maxPks,
long* pksUsed);

VB.NET <StructLayout(LayoutKind.Sequential, Size:=12)> _
Public Structure Peak
Dim trIdx As Integer
Dim value As Double
End Structure
Public Declare Function PP_GetPeaks_Idx Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef Peak peaks, _
ByVal maxPks As Integer, _
ByVal pksUsed As Integer) As Integer -
Public Declare Function PP_GetPeaks_Val Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef Peak peaks, _
ByVal maxPks As Integer, _
ByVal pksUsed As Integer) As Integer _
Public Declare Function PP_GetPeaksFromTr_Idx Lib "LB_API2.dll" _
(ByRef tr As Double, _
ByVal trLen As Integer, _
ByVal units As Integer, _
ByVal pkCrit As Double, _
ByVal measThresh As Double, _
ByRef peaks As Peak, _
ByVal maxPks As Integer, _
ByRef pksUsed As Integer) As Integer
Public Declare Function PP_GetPeaksFromTr_Val Lib "LB_API2.dll" _
(ByRef tr As Double, _
ByVal trLen As Integer, _
ByVal units As Integer, _
ByVal pkCrit As Double, _
ByVal measThresh As Double, _
ByRef peaks As Peak, _
ByVal maxPks As Integer, _
ByRef pksUsed As Integer) As Integer

C# public struct Peak
{
public int trIdx; // index where peak was found
public double value; // value of peak
};
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetPeaks_Idx
(int addr,
ref Peak peaks,

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 121

int maxPks,
ref int pksUsed);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetPeaksFromTr_Idx(ref double tr,
int trLen,
int units,
double pkCrit,
double measThresh,
ref Peak peaks,
int maxPks,
ref int pksUsed);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetPeaks_Val
(int addr,
ref Peak peaks,
int maxPks,
ref int pksUsed);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetPeaksFromTr_Val(ref double tr,
int trLen,
int units,
double pkCrit,
double measThresh,
ref Peak peaks,
int maxPks,
ref int pksUsed);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 122

PP_GetPulseEdgesTime (and related commands)

Related Commands:
PP_GetPulseEdgesPosit ion
These commands return the index of the leading and trailing edges of the pulse containing the peak
defined by pkTime or pkIdx. These calls are intended to be used with PP_GetPeak and other commands
as shown below.

The following algorithm applies to measuring rise time. It uses PP_GetPulseEdgesPosition but the same
algorithm works with PP_GetPulseEdgesTime also. The difference is that everything is in time
(microseconds) instead of trace index.
1. Acquire a trace (PP_GetTrace)
2. Move current trace to analysis trace (PP_CurrTrace2AnalysisTrace)
3. Get the peaks from the trace sorted by index (PP_GetPeaks_Idx)
4. Check that sufficient peaks exist for the desired measurements. Many measurements require at least
two pulses. Two
pulses requires at least two peaks. For this check the pksUsed parameter returned in the previous
PP_GetPeaks_Idx call.
5. Select the peaks of interest (pick the first peak returned in P_GetPeaks_Idx)
6. Get the edges of the pulses containing the peak (PP_GetPulseEdgesPosition)
7. Set the mode of the selected gate to ON (PP_SetGateMode)
8. Set the edges of the gate appropriately for the measurement: (PP_SetGateStartEndPosition)
For rise time, set the left gate edge before the rising edge. Set the right gate edge midway between the
rising and falling edges.
Example:
Assume a 1ms sweep time (10,000 points) for a resolution of 100 ns. Assume a 10 kHz signal with a
20% duty cycle. Assume the first peak should be located between 1000 and 1200; assume it is located at
an index of 1100. The pulse is 200 points or pixels wide, so that the left pulse edge will be about 1000,
and the right pulse edge will be about 1200. Set the gate edges so that the left side of the gate is at 950
(about 50 pixesl before the rising edge), and the right side of the gate is at 1100 (midway between rising
and falling edge).
9. You can now measure the rise time using PP_GetGateRiseTime.
NOTE. This function and the Related Calls: are especially useful in making programmatic measurements.
These functions allow for the easiest placement of gate edges.

Pass Parameters:
addr – address of the selected instrument
pkTime or pkIdx – location of the peak in microseconds or trace index
*leftSide, *leftTrIdx – returned location of the left pulse edge in time (microseconds) or trace index
*rightSide, *rightTrIdx – returned location of the right pulse edge in time (microseconds) or trace index

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ long __stdcall PP_GetPulseEdgesTime
(long addr,
double pkTime,
double* leftSide,
double* rightSide);
long __stdcall PP_GetPulseEdgesPosition
(long addr,
long pkIdx,

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 123

long *leftTrIdx,
long *rightTrIdx);
VB.NET Public Declare Function PP_GetPulseEdgesPosition Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal pkIdx As Integer, _
ByRef leftTrIdx As Integer, _
ByRef rightTrIdx As Integer) _
As Integer
Public Declare Function PP_GetPulseEdgesTime Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal pkTime As Double, _
ByRef leftSide As Double, _
ByRef rightSide As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetPulseEdgesPosition
(int addr,
int pkIdx,
ref int leftTrIdx,
ref int rightTrIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetPulseEdgesTime
(int addr,
double pkTime,
ref double leftSide,
ref double rightSide);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 124

PP_GetTrace
This command causes the instrument to take a trace and return the resultant data. The trace is an array
of equally spaced (in time) samples. All values are in dBm. The user must pass the address of the
instrument, an array of doubles and the length of the array.

An outline of how to take a trace and make a measurement (PRF) programmatically is shown below:
1. Initialize the instrument (LB_Initialize_Addr)
2. Set the frequency (LB_SetFrequency)
3. Set the sweep time (PP_SetSweepTime)
4. Get the length of the trace (PP_GetTraceLength)
5. Allocate an array equal to or larger than trace length
6. Get a trace (PP_GetTrace)
7. Move the current trace to the analysis trace (PP_CurrTrace2AnalysisTrace)
8. Get the peaks orders by index (PP_GetPeaks_Idx)
9. Use the first two peaks from the previous call to get pulse edges (PP_GetPulseEdgesPosition)
10. Set the mode of the gate to ON(PP_SetGateMode)
11. Position the left side of the gate before the leading edge of the first pulse the right side of the gate
after the trailing edge of the second pulse (SetGateStartEndPosition).
12. Make the PRF measurement (PP_GetGatePRF)

Once this sequence is accomplished, a number of commands on subsequent measurements can be
eliminated. The most notable is initialization. Commands such as setting frequency, sweep time, gate
mode and other commands need not be made unless the state of the measurement changes. The
following sequence would repeat the same measurement (assuming no changes):
1. Get a trace (PP_GetTrace)
2. Move the current trace to the analysis trace (PP_CurrTrace2AnalysisTrace)
3. Make the PRF measurement (PP_GetGatePRF)

This short sequence makes several assumptions; first, that the signal is very stable. However, such
approaches have been used to take the average of several measurements. Another technique is to make
several measurements on a single analysis trace. The sequence might look like this:
1. Initialize the instrument (LB_Initialize_Addr)
2. Set the frequency (LB_SetFrequency)
3. Set the sweep time (PP_SetSweepTime)
4. Get the length of the trace (PP_GetTraceLength)
5. Allocate an array equal to or larger than trace length
6. Get a trace (PP_GetTrace)
7. Move the current trace to the analysis trace (PP_CurrTrace2AnalysisTrace)
8. Get the peaks orders by index (PP_GetPeaks_Idx)
9. Use the first two peaks from the previous command to get pulse edges (PP_GetPulseEdgesPosition)
10. Set the mode of the gate to ON (PP_SetGateMode)
11. Position the left side of the gate before the leading edge of the first pulse the right side of the gate
after the trailing edge of the second pulse (SetGateStartEndPosition).
12. Make the PRF measurement (PP_GetGatePRF)
13. Using the current gate and trace make a PRT measurement (PP_GetGatePRT)
14. Using the current gate and trace make a pulse width measurement (PP_GetGatePulseWidth)
15. Using the same pulse edge information reposition the gate edges for a rise time measurement
(SetGateStartEndPosition).
16. Make a rise time measurement (PP_GetGateRiseTime)
Since steps x through y may be used often, it may be useful to combine them as a function.
[Step x is "Set the frequency". Step y is "Use the first two peaks from the previous...]
There are a number of approaches that will provide measurement results. You could also use the trace
based measurements
(e.g. PP_GetTracePkPwr) if they are sufficient.

Pass Parameters:

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 125

addr – address of the selected instrument
tr – a properly sized array of doubles
trLen – the length of the array allocated by the user
trUsed – the number of elements of the array containing valid data starting with the first element

Returned Values:
Failure < 0
Success >= 1

Command Group:
Pulse Profiling Trace

Sample Code Declarations:
C++ long __stdcall PP_GetTrace(long addr, double *tr, long trLen, long* trUsed);
VB.NET Public Declare Function PP_GetTrace Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef tr As Double, _
ByVal trLen As Integer, _
ByRef trUsed As Integer) As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetTrace
(int addr,
ref double tr,
int trLen,
ref int trUsed);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 126

PP_GetTraceAvgPower (and related commands)

Related Commands:
PP_GetTraceCrestFactor
PP_GetTraceDC
PP_GetTracePkPwr
PP_GetTracePulsePower
These commands make a number of measurements similar to the power meter measurement commands,
but operate on a single trace (which may or may not be averaged) instead of a set of random samples.
These measurement results may differ from the gated measurements. Gate measurements require the
user to select a particular cycle within a trace. Normally, these differences are unimportant. However,
there are times when these distinctions account for differences in the measurements. It should be noted
that these differences are not errors; rather, the variations in results are a direct result of the differences
in how the data is selected. Power meter measurements take a larger number of random samples over a
specified period of time. This randomization tends to negate partial cycles (a potential issue with some
trace-based measurements) but this methodology may also include periods that the user regards as
undesirable. While the measured result may be correct (give a specific set of samples), random samples
may not always represent the best means of collecting the data for the user’s intended purpose.
The trace—based measurements use contiguous sets of data in the form of a trace. These samples are
time-related to each other and related to certain features of the signal. Most notable among these
features is the transition or edge. In other words, trace based measurements selects data containing
signal content directed by the user. Some of the elements that may affect the trace are trigger edge,
trigger mode, pulse criteria, delay, trace averaging and averaging mode. The resultant acquisition may
bias trace-based measurements in an undesirable fashion. In this case, the user should be aware of the
potential for undesirable bias. Gated measurements allow the user to select and measure a specific
portion of the signal, and at the same time ignore all other data. It is critical that the user select a
representative subset of the visible trace. And the user should also be aware that potential exists for other
signals to be present. It may be important to check for the presence of these signals. In cases where
additional assurance is desirable, use the power meter measurements along side gates measurements,
or use these-trace base measurements.

Pass Parameters:
addr – address of the selected instrument

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Trace

Sample Code Declarations:
C++ long __stdcall PP_GetTraceAvgPower(long addr, double* avgPwr);
long __stdcall PP_GetTraceCrestFactor(long addr, double* CrF);
long __stdcall PP_GetTraceDC(long addr, double* dutyCycle);
long __stdcall PP_GetTracePkPwr(long addr, double* pkPwr);
long __stdcall PP_GetTracePulsePower(long addr, double* plsPwr);
VB.NET Public Declare Function PP_GetTraceAvgPower Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef avgPwr As Double) As Integer
Public Declare Function PP_GetTraceCrestFactor Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef CrF As Double) As Integer
Public Declare Function PP_GetTraceDC Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef dutyCycle As Double) As Integer
Public Declare Function PP_GetTracePkPwr Lib "LB_API2.dll" _

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 127

(ByVal addr As Integer, _
ByRef pkPwr As Double) As Integer
Public Declare Function PP_GetTracePulsePower Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef plsPwr As Double) As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetTraceAvgPower
(int addr,
ref double avgPwr);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetTracePulsePower
(int addr,
ref double plsPwr);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetTraceCrestFactor
(int addr,
ref double CrF);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetTracePkPwr
(int addr,
ref double pkPwr);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetTraceDC
(int addr,
ref double dutyCycle);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 128

PP_GetTraceLength
This command returns the number of trace points associated with the current sweep time. The trace
varies with sweep time as shown in the table below.

 Resolution

Sweep Time # Trace Points Undersampling (time/points)

10 μs 480 96 0.02833 μs

20 μs 960 96 0.02833 μs

50μs 2400 96 0.02833 μs

100 μs 4800 96 0.02833 μs

200 μs 9600 96 0.02833 μs

500 μs 10,000 48 0.05000 μs

1,000 μs 10,000 24 0.10000 μs

2,000 μs 10,000 24 0.20000 μs

5,000 μs 10,000 24 0.50000 μs

10,000 μs 10,000 24 1.00000 μs

20,000 μs 10,000 12 2.00000 μs

50,000 μs 10,000 6 5.00000 μs

100,000 μs 10,000 2 10.00000 μs

200,000 μs 10,000 1 20.00000 μs

500,000μs 10,000 1 50.00000 μs

1,000,000 μs 10,000 1 100.00000 μs

Pass Parameters:
addr – address of the selected instrument

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Trace

Sample Code Declarations:
C++ long __stdcall PP_GetTraceLength(long addr);
VB.NET Public Declare Function PP_GetTraceLength Lib "LB_API2.dll" _
(ByVal addr As Integer) As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetTraceLength(int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 129

PP_MarkerPosIsValid
This command returns the state of the selected marker. The marker mode must be normal or delta first,
otherwise an error will be returned. For the trace index, the marker position must be equal to or greater
than zero (the beginning of the trace) and less than the trace length (end of the trace). See the table
located in the PP_SetSweepTime description for more information about trace length.

Pass Parameters:
addr – address of the selected instrument
mrkIdx – index of marker (0..4)
valid – return value is 0 if the marker position is invalid and 1 if it is valid.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Marker

Sample Code Declarations:
C++ long __stdcall PP_MarkerPosIsValid(long addr, long mrkIdx, long* valid);
VB.NET Public Declare Function PP_MarkerPosIsValid Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer, _
ByRef valid As Integer) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_MarkerPosIsValid
(int addr,
int mrkIdx,
ref int valid);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 130

PP_MarkerToPk (and related commands)

Related Commands:
PP_MarkerToLowestPk
PP_MarkerToFirstPk
PP_MarkerToLastPk
PP_MarkerPrevPk
PP_MarkerNextPk
PP_MarkerPkHigher
PP_MarkerPkLower
These commands set one of five markers (0<=mrkIdx<=4) to the position specified in the command. The
underlying algorithm begins by getting a list of the peaks ordered by index or value. The subsequent
actions are as follows:
Marker to peak sets the marker to the highest peak
Marker to lowest peak sets the marker to the lowest peak
Marker to first peak sets the marker to the left most peak
Marker to last peak sets the marker to the right most peak
Marker to previous peak sets the marker to the peak to the left of the current location
Marker to next peak sets the marker to the peak to the right of the current location
Marker to next higher peak sets the marker to the first peak greater than the current value.
Marker to next lower peak sets the marker to the first peak less than the current value.
NOTE. The mode of the selected marker must be normal or delta; otherwise, an error will be returned. If
the mode is normal,
then the normal marker is repositioned. If the mode is delta, then the delta marker is repositioned.

Pass Parameters:
addr – address of the selected instrument
mrkIdx – index of the marker (0..4)

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Marker

Sample Code Declarations:
C++ long __stdcall PP_MarkerToPk(long addr, long mrkIdx);
long __stdcall PP_MarkerToLowestPk(long addr, long mrkIdx);
long __stdcall PP_MarkerToFirstPk(long addr, long mrkIdx);
long __stdcall PP_MarkerToLastPk(long addr, long mrkIdx);
long __stdcall PP_MarkerPrevPk(long addr, long mrkIdx);
long __stdcall PP_MarkerNextPk(long addr, long mrkIdx);
long __stdcall PP_MarkerPkHigher(long addr, long mrkIdx);
long __stdcall PP_MarkerPkLower(long addr, long mrkIdx);
VB.NET
Public Declare Function PP_MarkerToPk Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer) _
As Integer
Public Declare Function PP_MarkerToLowestPk Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer) _
As Integer
Public Declare Function PP_MarkerToFirstPk Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer) _

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 131

As Integer
Public Declare Function PP_MarkerToLastPk Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer) _
As Integer
Public Declare Function PP_MarkerPrevPk Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer) _
As Integer
Public Declare Function PP_MarkerNextPk Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer) _
As Integer
Public Declare Function PP_MarkerPkHigher Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer) _
As Integer
Public Declare Function PP_MarkerPkLower Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer) _
As Integer

C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_MarkerToPk(int addr, int mrkIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_MarkerToLowestPk(int addr, int mrkIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_MarkerPkLower(int addr, int mrkIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_MarkerPkHigher(int addr, int mrkIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_MarkerToFirstPk(int addr, int mrkIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_MarkerToLastPk(int addr, int mrkIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_MarkerPrevPk(int addr, int mrkIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_MarkerNextPk(int addr, int mrkIdx);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 132

PP_SetAnalysisTrace (and related commands)

Related commands:
PP_GetAnalysisTrace
These commands are companions to PP_CurrTrace2AnalysisTrace. While CurrTrace2AnalysisTrace
copies the current trace to the analysis trace, these commands allow you to get and set the analysis trace
directly. Bear in mind, when using these functions you must also know the frequency, sweep time, trace
length and units of measure (should be dBm).

Pass Parameters:
addr – address of the device
frequency – in Hertz
sweepTime – in microseconds
tr – an array or pointer to an array of 64-bit double precision floating points
trLen – length of the trace
PWR_UNITS – should be set to DBM (or 0)

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Trace

Sample Code Declarations:
C++ long PP_SetAnalysisTrace(long addr, double frequency, double sweepTime, double*tr, long trLen,
PWR_UNITS units)
long PP_GetAnalysisTrace(long addr, double* frequency, double* sweepTime, double*tr, long* trLen,
PWR_UNITS* units)
VB.NET Public Declare Function PP_SetAnalysisTrace Lib "LB_API2.dll"
(int addr,
double frequency,
double sweepTime,
double tr(),
int trLen,
PWR_UNITS units)
As Integer
Public Declare Function PP_GetAnalysisTrace Lib "LB_API2.dll"
(int addr,
double frequency,
double sweepTime,
double tr(),
int trLen,
PWR_UNITS units)
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
int PP_SetAnalysisTrace(int addr,
double frequency,
double sweepTime,
double[] tr,
int trLen,
PWR_UNITS units)
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
int PP_GetAnalysisTrace(int addr,
double frequency,
double sweepTime,
double[] tr,
int trLen,

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 133

PWR_UNITS units)

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 134

PP_SetAvgMode (and related commands)

Related Commands:
PP_GetTraceAvgs
PP_GetAvgMode
PP_ResetTraceAveraging
These commands set, auto-set or manual reset the averaging mode.
Trace averaging can be very important to making good measurements, and will reduce the noise on the
trace. There are three elements to trace averaging:

 setting the mode

 selecting the number of traces to average

 controlling the current state of averaging
PP_SetAvgMode sets the current trace averaging mode. The averaging mode may be off, auto-reset or
manual reset. If the averaging mode is off, then averaging will not be done. If it is auto reset, then when
the auto reset criteria is satisfied, trace averaging will restart (all old averages will be thrown away). If the
averaging mode is manual reset, then the averaging will continue until a call is made to change the
averages, turn the averaging off or until the call to reset the averaging is made.
PP_GetAvgMode gets the current trace averaging mode.
PP_GetTraceAvgs determines the number of traces that are averaged. This number may be between 1
and 100. Finally, PP_ResetTraceAveraging restarts the averaging process with the next trace if the mode
is auto reset or manual reset.

Pass Parameters:
addr – address of the selected instrument
*mode – pointer to AVG_MODE (32 bit integer)

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ enum AVG_MODE
{
AVG_OFF = 0,
AVG_AUTO_RESET = 1,
AVG_MANUAL_RESET = 2,
{
long __stdcall PP_GetAvgMode(long addr, AVG_MODE *mode);
long __stdcall PP_SetAvgMode(long addr, AVG_MODE mode);
long __stdcall PP_SetTraceAvgs(long addr, long averages);
long __stdcall PP_GetTraceAvgs(long addr, long*averages);
long __stdcall PP_ResetTraceAveraging(long addr);
VB.NET Public Enum AVG_MODE
AVG_OFF = 0
AVG_AUTO_RESET = 1
AVG_MANUAL_RESET = 2
End Enum
Public Declare Function PP_GetAvgMode Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef AvgMode As Integer) _
As Integer
Public Declare Function PP_SetAvgMode Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal AvgMode As Integer) _

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 135

As Integer
Public Declare Function PP_SetTraceAvgs Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal Avgs As Integer) _
As Integer
Public Declare Function PP_GetTraceAvgs Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef Avgs As Integer) _
As Integer
Public Declare Function PP_ResetTraceAveraging Lib "LB_API2.dll" _
(ByVal addr As Integer) _
As Integer

C# public enum AVG_MODE
{
AVG_OFF = 0,
AVG_AUTO_RESET = 1,
AVG_MANUAL_RESET = 2,
}
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetAvgMode(int addr, ref AVG_MODE mode);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetAvgMode(int addr, AVG_MODE mode);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetTraceAvgs(int addr, int averages);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetTraceAvgs(int addr, ref int averages);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_ResetTraceAveraging(int addr);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 136

PP_SetAvgResetSens (and related commands)

Related Commands:
PP_GetAvgResetSens
These commands set or get the criteria used to reset the averaging when the averaging mode is
AVG_AUTO_RESET (see PP_SetAvgMode and PP_GetAvgMode).

Pass Parameters:
addr – address of the selected instrument
*sensitivity – value change required in dB before auto reset is satisfied

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ long __stdcall PP_GetAvgResetSens(long addr, double* sensitivity);
long __stdcall PP_SetAvgResetSens(long addr, double sensitivity);
VB.NET Public Declare Function PP_SetAvgResetSens Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal ResetSensitivity As Double) _
As Integer
Public Declare Function PP_GetAvgResetSens Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef ResetSensitivity As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetAvgResetSens(int addr, double sensitivity);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetAvgResetSens(int addr, ref double sensitivity);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 137

PP_SetClosestSweepTimeUSEC
This command sets the sweep time to the fixed sweep time closest to the sweep time sent (in
microseconds) to the command. For instance, if a value of 11 was sent (meaning 11 μs sweep time) the
system would set the sweep time to 10 μs .

Pass Parameters:
addr – address of the selected instrument
swpTm – desired sweep time in microseconds

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ long __stdcall PP_SetClosestSweepTimeUSEC(long addr, long swpTm);
VB.NET Public Declare Function PP_SetClosestSweepTimeUSEC Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal swpTimeUSEC As Integer) As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetClosestSweepTimeUSEC(long addr, long swpTm);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 138

PP_SetFilter (and related commands)

Related Commands:
PP_GetFi l ter
These commands set or get the enumeration associated with the current filter settings. The enumeration
for the various filter poles corner frequencies are shown below. The poles vary the slope of the filter skirt,
while the cutoff varies the 3dB point of the filter.

Pass Parameters:
addr – address of the selected instrument
fltrIdx – index of cutoff frequency
fltrPolse – index of filter poles

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ enum FLT_POLES
{
ONE_POLE = 0,
TWO_POLES = 1,
FOUR_POLES = 2
};
enum FLT_CO_FREQ
{
FLT_UNK = -1,
FLT_DIS = 0,
FLT_100K = 1,
FLT_200K = 2,
FLT_300K = 3,
FLT_500K = 4,
FLT_1M = 5,
FLT_2M = 6,
FLT_3M = 7,
FLT_5M = 8,
FLT_MAX = 9
};
long __stdcall PP_GetFilter(long addr,
FLT_CO_FREQ* fltrIdx);
long __stdcall PP_SetFilter(long addr,
FLT_CO_FREQ fltrIdx);
long __stdcall PP_SetPoles(long addr, FLT_POLES
fltrPoles);
long __stdcall PP_GetPoles(long addr, FLT_POLES*
fltrPoles);
// filter unknown
// filters disabled
// 100KHz
// 200KHz
// 300KHz
// 500KHz
// 1MHz
// 2MHz
// 3MHz

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 139

// 5MHz
// >10MHz
VB.NET Public Enum FLT_POLES
ONE_POLE = 0
TWO_POLES = 1
FOUR_POLES = 2
End Enum
Public Enum FLT_CO_FREQ
FLT_UNK = -1 'filter unknown
FLT_DIS = 0 'filters disabled
FLT_100K = 1 '100KHz
FLT_200K = 2 '200KHz
FLT_300K = 3 '300KHz
FLT_500K = 4 '500KHz
FLT_1M = 5 '1MHz
FLT_2M = 6 '2MHz
FLT_3M = 7 '3MHz
FLT_5M = 8 '5MHz
FLT_MAX = 9 '>10MHz
End Enum

"LB_API2.dll" _
(ByVal addr As Integer, _
ByRef fltrIdx As Integer) _
As Integer
Public Declare Function PP_SetFilter Lib
"LB_API2.dll" _
(ByVal addr As Integer, _
ByVal fltrIdx As Integer) _
As Integer
Public Declare Function PP_GetPoles Lib
"LB_API2.dll" _
(ByVal addr As Integer, _
ByRef fltrPoles As Integer) _
As Integer
Public Declare Function PP_SetPoles Lib
"LB_API2.dll" _
(ByVal addr As Integer, _
ByVal fltrPoles As Integer) _
As Integer
C# public enum FLT_POLES
{
ONE_POLE = 0,
TWO_POLES = 1,
FOUR_POLES = 2
}
public enum FLT_CO_FREQ
{
FLT_UNK = -1, // filter unknown
FLT_DIS = 0, // filters disabled
FLT_100K = 1, // 100KHz
FLT_200K = 2, // 200KHz
FLT_300K = 3, // 300KHz
FLT_500K = 4, // 500KHz
FLT_1M = 5, // 1MHz
FLT_2M = 6, // 2MHz

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 140

FLT_3M = 7, // 3MHz
FLT_5M = 8, // 5MHz
FLT_MAX = 9 // >=10MHz
};
[System.Runtime.InteropServices.DllImport("
LB_API2.dll")]
public static extern int PP_SetPoles(int addr,
FLT_POLES fltrPoles);
[System.Runtime.InteropServices.DllImport("
LB_API2.dll")]
public static extern int PP_GetPoles(int addr, ref
FLT_POLES fltrPoles);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 141

PP_SetGateMode (and related commands)

Related Commands:
PP_GetGateMode
These commands set or get the gate mode. The gate mode must be on to position the gate edges or use
the gate for measurements.

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the selected gate
*mode – returns the mode of the gate. A gate must be in the GATE_ON mode to position the gate edges
and to
make measurements.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ enum GATE_MODE
{
GATE_OFF = 0,
GATE_ON = 1
};
long __stdcall PP_GetGateMode(long addr, long gateIdx, GATE_MODE * mode);
long __stdcall PP_SetGateMode(long addr, long gateIdx, GATE_MODE mode);

VB.NET Public Enum GATE_MODE
GATE_OFF = 0
GATE_ON = 1
End Enum
Public Declare Function PP_SetGateMode Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mrkIdx As Integer, _
ByVal mode As Integer) _
As Integer
Public Declare Function PP_GetGateMode Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef gateMode As Integer) _
As Integer
C# public enum GATE_MODE
{
GATE_OFF = 0,
GATE_ON = 1
{
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetGateMode
(int addr,
int gateIdx,
GATE_MODE mode);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGateMode
(int addr,
int gateIdx,

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 142

ref GATE_MODE mode);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 143

PP_SetGateStartEndPosition (and related commands)

Related Commands:
PP_GetGateStartEndPosit ion
PP_SetGateStartEndTime
PP_GetGateStartEndTime
PP_SetGateStartPosit ion
PP_GetGateStartPosit ion
PP_SetGateEndPosit ion
PP_GetGateEndPosit ion
PP_SetGateStartTime
PP_GetGateStartTime
PP_SetGateEndTime
PP_GetGateEndTime
These commands set or get the gate start (left side) and/or end (right side) in terms of trace index or time.
If the index or time is out of range (i.e. index or time < 0 or index > trace length or time > sweep time),
then the gate position will be reported as invalid. Time is in microseconds. Index is trace index.

Pass Parameters:
addr – address of the selected instrument
gateIdx – index of the desired gate (0..4)
sttIdx or sttTm – start or left side of the gate as an index into the trace (sttIdx < stpIdx)
stpIdx or endTm – stop or right side of the gate as an index into the trace (stpIdx > sttIdx)

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Gate

Sample Code Declarations:
C++ long __stdcall PP_SetGateStartEndPosition(long addr,
long gateIdx,
long sttIdx,
ong endIdx);
long __stdcall PP_GetGateStartEndPosition(long addr,
long gateIdx,
long* trSttIdx,
long* trEndIdx);
long __stdcall PP_SetGateStartEndTime(long addr,
long gateIdx,
double sttTm,
double endTm);
long __stdcall PP_GetGateStartEndTime(long addr,
long gateIdx,
double* sttTm,
double* endTm);
long __stdcall PP_SetGateStartPosition(long addr,long gateIdx,long trSttIdx);
long __stdcall PP_GetGateStartPosition(long addr,long gateIdx,long* trSttIdx);
long __stdcall PP_SetGateStartTime(long addr,long gateIdx,double sttTm);
long __stdcall PP_GetGateStartTime(long addr,long gateIdx,double* sttTm);
long __stdcall PP_SetGateEndPosition(long addr, long gateIdx, long trIdx);
long __stdcall PP_GetGateEndPosition(long addr,long gateIdx,long* trEndIdx);
long __stdcall PP_SetGateEndTime(long addr, long gateIdx, double endTm);
long __stdcall PP_GetGateEndTime (long addr,long gateIdx,double* endTm);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 144

VB.NET Public Declare Function PP_SetGateStartEndPosition Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gatIdx As Integer, _
ByVal trSttIdx As Integer, _
ByVal trEndIdx As Integer) As Integer
Public Declare Function PP_GetGateStartEndPosition Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef trSttIdx As Integer, _
ByRef trEndIdx As Integer) _
As Integer
Public Declare Function PP_SetGateStartEndTime Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByVal sttTm As Double, _
ByVal endTm As Double) _
As Integer

Public Declare Function PP_GetGateStartEndTime Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gateIdx As Integer, _
ByRef sttTm As Double, _
ByRef endTm As Double) _
As Integer
Public Declare Function PP_SetGateStartPosition Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gatIdx As Integer, _
ByVal trSttIdx As Integer) As Integer
Public Declare Function PP_GetGateStartPosition Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gatIdx As Integer, _
ByRef trSttIdx As Integer) As Integer
Public Declare Function PP_SetGateStartTime Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gatIdx As Integer, _
ByVal sttTm As Double) As Integer
Public Declare Function PP_GetGateStartTimeLib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gatIdx As Integer, _
ByRef sttTm As Double) As Integer
Public Declare Function PP_SetGateEndPosition Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal trEndIdx As Integer, _
ByVal trSttIdx As Integer) As Integer
Public Declare Function PP_GetGateEndPosition Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gatIdx As Integer, _
ByRef trEndIdx As Integer) As Integer
Public Declare Function PP_SetGateEndTime Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gatIdx As Integer, _
ByVal endTm As Double) As Integer
Public Declare Function PP_GetGateEndTimeLib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal gatIdx As Integer, _
ByRef endTm As Double) As Integer

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 145

C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetGateStartEndPosition
(int addr,
int gateIdx,
int trSttIdx,
int trEndIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGateStartEndPosition
(int addr,
int gateIdx,
ref int trSttIdx,
ref int trEndIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetGateStartEndTime
(int addr,
int gateIdx,
double sttTm,
double endTm);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGateStartEndTime
(int addr,
int gateIdx,
ref double gateSttTm,
ref double gateEndTm);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetGateStartPosition
(int addr,
int gateIdx,
int trIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGateStartPosition
(int addr,
int gateIdx,
ref int trIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetGateStartTime
(int addr,
int gateIdx,
double gateTm);

public static extern int PP_GetGateStartTime
(int addr,
int gateIdx,
ref double gateTm);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetGateEndPosition
(int addr,
int gateIdx,
int trIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGateEndPosition
(int addr,
int gateIdx,
ref int trIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 146

public static extern int PP_SetGateEndTime
(int addr,
int gateIdx,
double gateTm);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetGateEndTime
(int addr,
int gateIdx,
ref double gateTm);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 147

PP_SetMarkerDeltaTime (and related commands)

Related Commands:
PP_GetMarkerDeltaTime
These commands set or get the positions the selected marker in microseconds.

Pass Parameters:
addr – address of the selected instrument
mrkIdx – index of marker (0..4)
mrkTm – time in microseconds

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Marker

Sample Code Declarations:
C++ long __stdcall PP_SetMarkerDeltaTime(long addr, long mrkIdx, double mkrTm);
long __stdcall PP_GetMarkerDeltaTime(long addr, long mrkIdx, double* mkrTm);
VB.NET Public Declare Function PP_SetMarkerDeltaTime Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer, _
ByVal mkrTm As Double) _
As Integer
Public Declare Function PP_GetMarkerDeltaTime Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer, _
ByRef mkrTm As Double) _
As Integer

C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetMarkerDeltaTime
(int addr,
int mrkIdx,
double mkrTm);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetMarkerDeltaTime
(int addr,
int mrkIdx,
ref double mkrTm);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 148

PP_SetMarkerMode (and related commands)

Related Commands:
PP_GetMarkerMode
These commands set or get the marker mode to on, normal or delta marker.

Pass Parameters:
addr – address of the selected instrument
mrkIdx – marker index (0..4) mode – marker
mode is off, normal or delta. If the marker is in normal mode. In normal mode the normal marker is be
positioned or
measured. If the marker is in delta mode then the delta marker is positioned or measured.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Marker

Sample Code Declarations:
C++ enum MARKER_MODE
{
MKR_OFF = 0,
NORMAL_MKR = 1,
DELTA_MKR = 2
};
long __stdcall PP_SetMarkerMode(long addr, long mrkIdx, MARKER_MODE mode);
long __stdcall PP_GetMarkerMode(long addr, long mrkIdx, MARKER_MODE * mode);

VB.NET Public Enum MARKER_MODE
MKR_OFF = 0
NORMAL_MKR = 1
DELTA_MKR = 2
End Enum
Public Declare Function PP_SetMarkerMode Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mrkIdx As Integer, _
ByVal mode As Integer) _
As Integer
Public Declare Function PP_GetMarkerMode Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer, _
ByRef mode As Integer) _
As Integer
C# public enum MARKER_MODE
{
MKR_OFF = 0,
NORMAL_MKR = 1,
DELTA_MKR = 2
}
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetMarkerMode
(int addr,
int mrkIdx,
MARKER_MODE mode);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetMarkerMode

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 149

(int addr,
int mrkIdx,
ref MARKER_MODE mode);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 150

PP_SetMarkerPosition (and related commands)

Related Commands:
PP_GetMarkerPosit ion
PP_SetMarkerPosit ionTime
PP_GetMarkerPosit ionTime
These commands set or get the position of the normal or delta marker depending on the marker mode. If
the marker is in normal mode, then the normal marker is positioned. If the marker is in delta mode, then
the delta marker is positioned and the normal marker is unaffected. The marker may be positioned in
terms of index or time (microseconds).

Pass Parameters:
addr – address of the selected instrument
mrkIdx – index of marker
trIdx or mrkTm –trace index or time in microseconds

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Marker

Sample Code Declarations:
C++ long __stdcall PP_SetMarkerPosition(long addr, long mrkIdx, long trIdx);
long __stdcall PP_GetMarkerPosition(long addr, long mrkIdx, long* trIdx);
long __stdcall PP_SetMarkerPositionTime(long addr, long mrkIdx, double mkrTm);
long __stdcall PP_GetMarkerPositionTime(long addr, long mrkIdx, double* mkrTm);
VB.NET Public Declare Function PP_SetMarkerPosition Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer, _
ByVal trIdx As Integer) _
As Integer
Public Declare Function PP_GetMarkerPosition Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer, _
ByRef trIdx As Integer) _
As Integer
Public Declare Function PP_SetMarkerPositionTime Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer, _
ByVal mkrTm As Double) _
As Integer
Public Declare Function PP_GetMarkerPositionTime Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mkrIdx As Integer, _
ByRef mkrTm As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetMarkerPosition
(int addr,
int mrkIdx,
int trIdx);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetMarkerPosition
(int addr,
int mrkIdx,
ef int trIdx);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 151

[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetMarkerPositionTime
(int addr,
int mrkIdx,
double mkrTm);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetMarkerPositionTime
(int addr,
int mrkIdx,
ref double mkrTm);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 152

PP_SetMeasurementThreshold (and related commands)

Related Commands:
PP_GetMeasurementThreshold
These commands set or get the measurement threshold. The measurement threshold, along with the
peak criteria, affects a number of measurement commands, especially the peak commands. In short, the
threshold sets the lowest value considered in the trace. When a trace is searched for peaks (the analysis
trace), before the search takes place all trace values lower than the threshold are set equal to the
threshold. Then the trace is searched for peaks. The threshold is set or reported in dBm.
In general the threshold should be regarded as a filter.

Pass Parameters:
addr – address of the selected instrument
measThreshold_dBm – measurement threshold in dBm

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ long __stdcall PP_SetMeasurementThreshold(long addr, double measThreshold_dBm);
long __stdcall PP_GetMeasurementThreshold(long addr, double* measThreshold_dBm);

VB.NET Public Declare Function PP_GetMeasurementThreshold Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef measThreshold_dBm As Double) _
As Integer
Public Declare Function PP_SetMeasurementThreshold Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal measThreshold_dBm As Double) _
As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetMeasurementThreshold
(int addr,
double measThreshold_dBm);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetMeasurementThreshold
(int addr,
ref double measThreshold_dBm);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 153

PP_SetPoles (and related commands)

Related Commands:
PP_GetPoles
These commands set or get the number of poles in the current filter. As the number of poles increase, the
sharpness of the cutoff increases. The valid indices are 0…2 indicating the number of poles between 1..4.

Pass Parameters:
addr – address of the selected instrument

Returned Values:
Failure <= 0 Success >= 1

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ enum FLT_POLES
{
ONE_POLE = 0,
TWO_POLES = 1,
FOUR_POLES = 2
};
long __stdcall PP_SetPoles(long addr, FLT_POLES fltrPoles);
long __stdcall PP_GetPoles(long addr, FLT_POLES* fltrPoles);

VB.NET Public Enum FLT_POLES
ONE_POLE = 0
TWO_POLES = 1
FOUR_POLES = 2
End Enum
Public Declare Function PP_SetPoles Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal fltrPoles As Integer) _
As Integer
Public Declare Function PP_GetPoles Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef fltrPoles As Integer) _
As Integer
C#
public enum FLT_POLES
{
ONE_POLE = 0,
TWO_POLES = 1,
FOUR_POLES = 2
};
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetPoles
(int addr,
FLT_POLES fltrPoles);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetPoles
(int addr,
ref FLT_POLES fltrPoles);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 154

PP_SetSweepDelay (and related commands)

Related Commands:
PP_GetSweepDelay
These commands set or get the sweep delay in microseconds. Sweep delay is the time between the
trigger and the start of data acquisition. The sweep delay limitations are as follows:

Sweep Time Max Sweep Time (Under sampled) Max Sweep time

(No Undersampling)

10 μsto10ms 1 <= 10 ms
20 ms to 50 ms 1 <= 10 ms >10 ms to 999 ms

100 ms to 1 second >10 ms to 999 ms

Delay sweep is taken in one of two ways. Sweep times at 10 ms and faster always use undersampling.
Undersampling tends to extend the time required to acquire data. Traces taken without undersampling
may result in an increase in noise at lower power levels. However, you will see an improvement in data
acquisition time. Trace averaging can be used to offset this effect.

Pass Parameters:
addr – address of the selected instrument
SwpDly –delay in microseconds before data is taken. Delay is measured from the trigger edge.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ long __stdcall PP_GetSweepDelay(long addr, long* SwpDly);
long __stdcall PP_SetSweepDelay(long addr, long SwpDly);
VB.NET Public Declare Function PP_SetSweepDelay Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal delay As Integer) As Integer
Public Declare Function PP_GetSweepDelay Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef delay As Integer) As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetSweepDelay
(int addr,
int SwpDly);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetSweepDelay
(int addr,
ref int SwpDly);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 155

PP_SetSweepDelayMode (and related commands)

Related Commands:
PP_GetSweetDelayMode
These commands turn the sweep delay on or off. The sweep delay parameter remains unchanged.

Pass Parameters:
addr – address of the selected instrument
SwpDlyMode – 0=OFF, 1 = ON

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ long __stdcall PP_SetSweepDelayMode(long addr, long SwpDlyMode);
long __stdcall PP_GetSweepDelayMode(long addr, long* SwpDlyMode);
VB.NET Public Declare Function PP_SetSweepDelayMode Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mode As Integer) As Integer
Public Declare Function PP_GetSweepDelayMode Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef mode As Integer) As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetSweepDelayMode
(int addr,
int SwpDlyMode);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetSweepDelayMode
(int addr,
ref int SwpDlyMode);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 156

PP_SetSweepDelayMode (and related commands)

Related Commands:
PP_GetSweetDelayMode
These commands turn the sweep delay on or off. The sweep delay parameter remains unchanged.

Pass Parameters:
addr – address of the selected instrument
SwpDlyMode – 0=OFF, 1 = ON

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ long __stdcall PP_SetSweepDelayMode(long addr, long SwpDlyMode);
long __stdcall PP_GetSweepDelayMode(long addr, long* SwpDlyMode);
VB.NET Public Declare Function PP_SetSweepDelayMode Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal mode As Integer) As Integer
Public Declare Function PP_GetSweepDelayMode Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef mode As Integer) As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetSweepDelayMode
(int addr,
int SwpDlyMode);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetSweepDelayMode
(int addr,
ref int SwpDlyMode);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 157

PP_SetSweepHoldOff (and related commands)

Related Commands:
PP_GetSweepHoldOff
These commands specify (or get) the length of time (in microseconds) to wait after a sweep or trace is
taken.

Pass Parameters:
addr – address of the selected instrument

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ long __stdcall PP_SetSweepHoldOff(long addr, long SwpHOff);
long __stdcall PP_GetSweepHoldOff(long addr, long* SwpHOff);
VB.NET Public Declare Function PP_SetSweepHoldOff Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal SwpHOff As Integer) As Integer
Public Declare Function PP_GetSweepHoldOff Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef SwpHOff As Integer) As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetSweepHoldOff
(int addr,
int SwpHOff);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetSweepHoldOff
(int addr,
ref int SwpHOff);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 158

PP_SetSweepTime (and related commands)

Related Commands:
PP_GetSweepTime
These commands set or get the sweep time (in microseconds) for the next sweep taken. Sweep time is a
1, 2, 5 sequence starting with 10 μs and ending with 1 second. The table below shows the relationship
between sweep times points per trace, Undersampling and resolution:

Sweep Time # Trace Points
Under

Sampling
Resolution

(time/points)

10 μs 480 96 0.02833 μs

20 μs 960 96 0.02833 μs

50 μs 2400 96 0.02833 μs

100 μs 4800 96 0.02833 μs

200 μs 9600 96 0.02833 μs

500 μs 10,000 48 0.05000 μs

1,000 μs 10,000 24 0.10000 μs

2,000 μs 10,000 24 0.20000 μs

5,000 μs 10,000 24 0.50000 μs

10,000 μs 10,000 24 1.00000 μs

20,000 μs 10,000 12 2.00000 μs

50,000 μs 10,000 6 5.00000 μs

100,000 μs 10,000 2 10.00000 μs

200,000 μs 10,000 1 20.00000 μs

500,000 μs 10,000 1 50.00000 μs

1,000,000 μs 10,000 1 100.00000 μs

Pass Parameters:
addr – address of the selected instrument
SwpTm – set sweep time (in microseconds) for the next sweep taken. Sweep time is a 1, 2, 5 sequence
starting with 10 μs and ending with 1 second

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ long __stdcall PP_SetSweepTime(long addr, long SwpTm);
long __stdcall PP_GetSweepTime(long addr, long* SwpTm);
VB.NET Public Declare Function PP_SetSweepTime Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal swpTimeUSEC As Integer) As Integer
Public Declare Function PP_GetSweepTime Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef swpTimeUSEC As Integer) As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 159

public static extern int PP_SetSweepTime(int addr, int SwpTm);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetSweepTime(int addr, ref int SwpTm);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 160

PP_SetTimeOut (and related commands)

Related Commands:
PP_GetTimeOut
These commands set or get the timeout used while taking a trace.

Pass Parameters:
addr - 32 bit integer containing the address of the device for which the length of the analysis trace is
desired.
tmoUSEC - 32 bit integer indicating the timeout in microseconds.

Returned Values:
A return value of greater than zero indicates success. A return value less than zero indicates failure.

Command Group:
Pulse Profiling Setup

Sample Code Declarations:
C++ long PP_GetTimeOut(long addr, long* tmoUSEC);
long PP_SetTimeOut(long addr, long tmoUSEC);
VB.NET Public Declare Function int PP_GetTimeOut Lib "LB_API2.dll" (ByVal addr As Integer, ByRef
tmoUSEC
as integer) As Integer
Public Declare Function int PP_SetTimeOut Lib "LB_API2.dll" (ByVal addr As Integer, ByVal tmoUSEC
as integer) As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetTimeOut(int addr, ref int tmoUSEC);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetTimeOut(int addr, int tmoUSEC);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 161

PP_SetTriggerEdge (and related commands)

Related Commands:
PP_GetTriggerEdge
These commands set or get the trigger signal edge on which the beginning of the trace will occur. The
values are positive edge or negative edge.

Pass Parameters:
addr – address of the selected instrument
TrgEdge – specifies the trigger edge. This value can be 0 (positive) or 1 (negative)

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Trigger

Sample Code Declarations:
C++ enum TRIGGER_EDGE
{
POSITIVE = 0,
NEGATIVE = 1
};
long __stdcall PP_SetTriggerEdge(long addr, TRIGGER_EDGE TrgEdge);
long __stdcall PP_GetTriggerEdge(long addr, TRIGGER_EDGE* TrgEdge);

VB.NET Public Enum TRIGGER_EDGE
POSITIVE = 0
NEGATIVE = 1
End Enum
Public Declare Function PP_SetTriggerEdge Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal trgEdge As TRIGGER_EDGE) As Integer
Public Declare Function PP_GetTriggerEdge Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRefl trgEdge As TRIGGER_EDGE) As Integer
C# public enum TRIGGER_EDGE
{
POSITIVE = 0,
NEGATIVE = 1
}
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetTriggerEdge(int addr, TRIGGER_EDGE TrgEdge);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetTriggerEdge(int addr, ref TRIGGER_EDGE TrgEdge);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 162

PP_SetTriggerLevel (and related commands)

Related Commands:
PP_GetTriggerLevel
These commands set or get the trigger level for internal triggering (manual or automatic). The level is
specified in dBm. How this value is used depends to some extent on trigger edge and threshold. If the
edge is positive, the trace will be triggered by the first sample whose value equals or exceeds the trigger
level. If the edge is negative, the trace will be triggered by the first sample whose value is equal to or less
than the trigger level.

Pass Parameters:
addr – address of the selected instrument
TrgLvl – the trigger level value in dBm.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Trigger

Sample Code Declarations:
C++ long __stdcall PP_SetTriggerLevel(long addr, double TrgLvl);
long __stdcall PP_GetTriggerLevel(long addr, double* TrgLvl);
VB.NET Public Declare Function PP_SetTriggerLevel Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal trgLvl As Double) As Integer
Public Declare Function PP_GetTriggerLevel Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef trgLvl As Double) As Integer
C# [System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetTriggerLevel
(int addr,
double TrgLvl);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetTriggerLevel
(int addr,
ref double TrgLvl);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 163

PP_SetTriggerOut (and related commands)

Related Commands:
PP_GetTriggerOut
These commands set or get the trigger out mode. The trigger out can be off (no trigger out) or it can be
normal (same polarity as the input trigger or inverted relative to the input trigger).

Pass Parameters:
addr – address of the selected instrument
trgOutMode – sets or gets the mode.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Trigger

Sample Code Declarations:
C++ enum TRIGGER_OUT_MODE
{
TRG_OUT_DISABLED = 0,
TRG_OUT_ENABLED_NON_INV = 1,
TRG_OUT_ENABLED_INV = 2
};
long __stdcall PP_SetTriggerOut(long addr, TRIGGER_OUT_MODE trgOutMode);
long __stdcall PP_GetTriggerOut(long addr, TRIGGER_OUT_MODE *trgOutMode);

VB.NET 'TRIGGER_OUT_
Public Enum TRIGGER_OUT_MODE
TRG_OUT_DISABLED
TRG_OUT_ENABLED_NON_INV
TRG_OUT_ENABLED_INV
End Enum
Public Declare Function PP_SetTriggerOut Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal trgOutMode As TRIGGER_OUT_MODE) As Integer
Public Declare Function PP_GetTriggerOut Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef trgOutMode As TRIGGER_OUT_MODE) As Integer
C# public enum TRIGGER_OUT_MODE
{
TRG_OUT_DISABLED = 0,
TRG_OUT_ENABLED_NON_INV = 1,
TRG_OUT_ENABLED_INV = 2
}
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetTriggerOut
(int addr,
TRIGGER_OUT_MODE trgOutMode);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetTriggerOut
(int addr,
ref TRIGGER_OUT_MODE trgOutMode);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 164

PP_SetTriggerSource (and related commands)

Related Commands:
PP_GetTriggerSource
These commands set or get the trigger source. Trigger source can be internal or external. External
triggers are received via the SMB connector on the back of the instrument. External triggers are TTL
triggers. They must have the following characteristics:

 pulse width of at least 2 μs

 PRF <= 300kHz

Internal triggers are derived from the incoming signal (most like an oscilloscope’s internal triggering). If
the source is internal auto level the following algorithm is followed:

 take a single untriggered sweep

 examine the single sweep for a peaks and transitions

 set the trigger level to the peak – peak criteria (typically 3-6dB)

 take a normal trace triggering on the previously selected value

This process is followed each time a trace is taken. If the source is set to internal manual, the incoming
trace is examined for an appropriate negative or positive edge at the level specified in P_SetTriggerLevel.
If a signal is not found, an error is returned.

Pass Parameters:
addr – address of the selected instrument TrgSrc – the trigger source, internal auto-level, internal manual
level and
external.

Returned Values:
Failure <= 0
Success >= 1

Command Group:
Pulse Profiling Trigger

Sample Code Declarations:
C++ enum TRIGGER_SOURCE
{
INT_AUTO_LEVEL = 0,
INTERNAL = 1,
EXTERNAL = 2
};
long __stdcall PP_SetTriggerSoure(long addr, TRIGGER_SOURCE TrgSrc);
long __stdcall PP_GetTriggerSoure(long addr, TRIGGER_SOURCE* TrgSrc);
VB.NET Public Enum TRIGGER_SOURCE
INT_AUTO_LEVEL = 0
INTERNAL = 1
EXTERNAL = 2
End Enum
Public Declare Function PP_SetTriggerSoure Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByVal trgSrc As TRIGGER_SOURCE) As Integer
Public Declare Function PP_GetTriggerSoure Lib "LB_API2.dll" _
(ByVal addr As Integer, _
ByRef trgSrc As TRIGGER_SOURCE) As Integer
C# public enum TRIGGER_SOURCE
{
INT_AUTO_LEVEL = 0,
INTERNAL = 1,
EXTERNAL = 2

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 165

}
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_SetTriggerSoure
(int addr,
TRIGGER_SOURCE TrgSrc);
[System.Runtime.InteropServices.DllImport("LB_API2.dll")]
public static extern int PP_GetTriggerSoure
(int addr,
ref TRIGGER_SOURCE TrgSrc);

Giga-tronics GT-8550B Series USB Power Sensors

Remote Operation and Programming Manual, Part Number 34784D, January 28, 2013 166

 End of Document

	Introduction
	Getting Started
	Computer Requirements
	Commands Common to all Models
	Pulse Measurements
	Pulse Profiling
	Addressing and Communicating with Sensors
	Identify the Instrument
	Setting the Instrument Address(es)
	To set the address using the Power Meter application.
	To set the address using the Sensor Manager application
	To set the address programmatically

	Make a Simple CW Measurement Example
	Visual C# 2010 Express Code
	Visual Basic 2010 Express Code
	VB 6.0 Code

	Command Groups
	CW Measurement Command Group
	Initialization and Identification Command Group
	Pulse Measurement Command Group
	Pulse Setup Command Group
	Pulse Profiling Gate Command Group
	Pulse Profiling Marker Command Group
	Pulse Profiling Setup Command Group
	Trigger Command Group

	Commands Listed in Alphabetical Order
	LB_AddressConflictExists
	LB_BlinkLED_Addr (and related commands)
	LB_BlinkLED_Idx
	LB_BlinkLED_SN

	LB_ChangeAddress
	LB_DriverVersion
	LB_GetFirmwareVersion
	LB_GetIndex_Addr (and related commands)
	LB_GetIndex_SN
	LB_GetModelNumber_Idx
	LB_GetModelNumber_SN

	LB_GetSerNo_Addr (and related commands)
	LB_GetSerNo_Idx

	LB_InitializeSensor_Addr (and related commands)
	LB_InitializeSensor_Idx
	LB_InitializeSensor_SN

	LB_IsDeviceInUse_Addr (and related commands)
	LB_IsDeviceInUse_Idx
	LB_IsDeviceInUse_SN

	LB_IsSensorConnected_Addr (and related commands)
	LB_IsSensorConnected_SN

	LB_MeasureBurst_DBM
	LB_MeasureCW
	LB_MeasureCW_PF
	LB_MeasurePulse
	LB_MeasurePulse_PF
	LB_ResetRegStates (and related commands)
	LB_ResetCurrentState

	LB_ReadStateFromINI (and related commands)
	LB_WriteStateToINI

	LB_SensorCnt
	LB_SensorList
	LB_Set75OhmsEnabled (and related commands)
	LB_Get75OhmsEnabled

	LB_SetAddress_Idx (and related commands)
	LB_GetAddress_Idx

	LB_SetAddress_SN (and related commands)
	LB_GetAddress_SN
	LB_GetAntiAliasingEnabled

	LB_SetAutoPulseEnabled (and related commands)
	LB_GetAutoPulseEnabled

	LB_SetAverages (and related commands)
	LB_GetAverages

	LB_SetCalDueDate (and related commands)
	LB_GetCalDueDate

	LB_SetCWReference (and related commands)
	LB_GetCWReference

	LB_SetDutyCycleEnabled (and related commands)
	LB_GetDutyCycleEnabled
	LB_SetDutyCyclePerCent
	LB_GetDutyCyclePerCent

	LB_SetExtendedAveraging (and related commands)
	LB_GetExtendedAveraging
	LB_SetExtendedAveragingEnabled
	LB_GetExtendedAveragingEnabled
	LB_ResetExtendedAveraging

	LB_SetFrequency (and related commands)
	LB_GetFrequency

	LB_SetLimitEnabled (and related commands)
	LB_GetLimitEnabled
	LB_SetSingleSidedLimit
	LB_GetSingleSidedLimit
	LB_SetDoubleSidedLimit
	LB_GetDoubleSidedLimit

	LB_SetMaxHoldEnabled (and related commands)
	LB_GetMaxHoldEnabled
	LB_ResetMaxHold

	LB_SetMeasurementPowerUnits (and related commands)
	LB_GetMeasurementPowerUnits

	LB_SetOffset (and related commands)
	LB_GetOffset
	LB_SetOffsetEnabled
	LB_GetOffsetEnabled

	LB_SetPulseCriteria (and related commands)
	LB_GetPulseCriteria

	LB_SetPulseReference (and related commands)
	LB_GetPulseReference

	LB_SetResponseEnabled (and related commands)
	LB_GetResponseEnabled
	LB_SetResponse
	LB_GetResponse

	LB_SetTTLTriggerInEnabled (and related commands)
	LB_GetTTLTriggerInEnabled
	LB_SetTTLTriggerInInverted
	LB_GetTTLTriggerInInverted
	LB_SetTTLTriggerInTimeOut
	LB_GetTTLTriggerInTimeOut

	LB_SetTTLTriggerOutEnabled (and related commands)
	LB_GetTTLTriggerOutEnabled
	LB_SetTTLTriggerOutInverted
	LB_GetTTLTriggerOutInverted

	LB_StoreReg (and related commands)
	LB_RecallReg

	LB_WillAddressConflict
	PP_AnalysisTraceIsValid
	PP_CheckTrigger
	PP_CnvtTrace
	PP_CurrTrace2AnalysisTrace
	PP_GatePositionIsValid
	PP_GetAnalysisTraceLength
	PP_GetGateCrestFactor
	PP_GetGateDroop
	PP_GetGateDutyCycle
	PP_GetGateEndPosition
	PP_GetGateFallTime
	PP_GetGateOverShoot
	PP_GetGatePRF
	PP_GetGatePRT
	PP_GetGatePulsePower
	PP_GetGatePulseWidth
	PP_GetGateRiseTime
	PP_GetMarkerAmp
	PP_GetMarkerDeltaAmp
	PP_GetPeaks_Val (and related commands)
	PP_GetPeaks_Idx
	PP_GetPeaksFromTr_Val
	PP_GetPeaksFromTr_Idx
	PP_GetPeaks_VEE_Idx
	PP_GetPeaks_VEE_Val

	PP_GetPulseEdgesTime (and related commands)
	PP_GetPulseEdgesPosition

	PP_GetTrace
	PP_GetTraceAvgPower (and related commands)
	PP_GetTraceCrestFactor
	PP_GetTraceDC
	PP_GetTracePkPwr
	PP_GetTracePulsePower

	PP_GetTraceLength
	PP_MarkerPosIsValid
	PP_MarkerToPk (and related commands)
	PP_MarkerToLowestPk
	PP_MarkerToFirstPk
	PP_MarkerToLastPk
	PP_MarkerPrevPk
	PP_MarkerNextPk
	PP_MarkerPkHigher
	PP_MarkerPkLower

	PP_SetAnalysisTrace (and related commands)
	PP_GetAnalysisTrace

	PP_SetAvgMode (and related commands)
	Related Commands:
	PP_GetTraceAvgs
	PP_GetAvgMode
	PP_ResetTraceAveraging

	PP_SetAvgResetSens (and related commands)
	PP_GetAvgResetSens

	PP_SetClosestSweepTimeUSEC
	PP_SetFilter (and related commands)
	PP_GetFilter

	PP_SetGateMode (and related commands)
	PP_GetGateMode

	PP_SetGateStartEndPosition (and related commands)
	PP_GetGateStartEndPosition
	PP_SetGateStartEndTime
	PP_GetGateStartEndTime
	PP_SetGateStartPosition
	PP_GetGateStartPosition
	PP_SetGateEndPosition
	PP_GetGateEndPosition
	PP_SetGateStartTime
	PP_GetGateStartTime
	PP_SetGateEndTime
	PP_GetGateEndTime

	PP_SetMarkerDeltaTime (and related commands)
	PP_GetMarkerDeltaTime

	PP_SetMarkerMode (and related commands)
	PP_GetMarkerMode

	PP_SetMarkerPosition (and related commands)
	PP_GetMarkerPosition
	PP_SetMarkerPositionTime
	PP_GetMarkerPositionTime

	PP_SetMeasurementThreshold (and related commands)
	PP_GetMeasurementThreshold

	PP_SetPoles (and related commands)
	PP_GetPoles

	PP_SetSweepDelay (and related commands)
	PP_GetSweepDelay

	PP_SetSweepDelayMode (and related commands)
	PP_GetSweetDelayMode

	PP_SetSweepDelayMode (and related commands)
	PP_GetSweetDelayMode

	PP_SetSweepHoldOff (and related commands)
	PP_GetSweepHoldOff

	PP_SetSweepTime (and related commands)
	PP_GetSweepTime

	PP_SetTimeOut (and related commands)
	PP_GetTimeOut

	PP_SetTriggerEdge (and related commands)
	PP_GetTriggerEdge

	PP_SetTriggerLevel (and related commands)
	PP_GetTriggerLevel

	PP_SetTriggerOut (and related commands)
	PP_GetTriggerOut

	PP_SetTriggerSource (and related commands)
	PP_GetTriggerSource

